算式基本定理

定理:每一个大于1的正整数n都可以唯一地写成素数的乘积,在乘积中的素因子按照非降序排列,正整数n的分解式n=(p1^α1)*(p2^α2)*(p3^α3)* ....... *(pk^αk)称为n的标准分解式,其中p1,p2,p3......pk是素数,p1<p2<p3.....,且α1α2,α3.......是正整数。

性质:(1)设d(n)为n的正因子的个数,则有d(n)=(α1+1)*(α2+1)*(α3+1)*......*(αk+1)

             //p1可以取0~α1个,有α1+1种取法,同理p2有α2+1种取法

        (2)设f(n)为n的所有因子之和,则有f(n)=【(p1^α1)-1】/(p1-1) * 【(p2^α2)-1】/(p2-1) * .....  *【(pk^αk)-1】/(pk-1)

        (3)n! 的素因子分解中的素数p的指数(幂)为【n/p】+【n/p^2】+【n/p^3】+.......

应用1:输入正整数n,计算 n! 中末尾0的个数

           输入:输入一个正整数n (1≤n≤1 000 000 000)

           输出:输出 n! 末尾0的个数

          样例输入:3

                            100

                            1024

          样例输出:0

                            24

                            253

分析:求n的阶乘末尾0的个数,即求n的阶乘的素因子分解中有多少对(2,5),即求2的指数和5的指数,取其中小的个数(利用性质3可求)

代码:

#include <cstdio>
#include <iostream>

using namespace std;

int main()
{
	int n;
	int s1,s2;
	int two,five;
	while(scanf("%d",&n)!=EOF)
	{
		two=2;
		s1=0;
		while(two<=n)
		{
			s1+=n/two;
			two<<=1;
		}
		
		five=5;
		s2=0;
		while(five<=n)
		{
			s2+=n/five;
			five*=5;
		}
		printf("%d\n",min(s1,s2));
	}
	return 0;
} 

补充:对于n!,在因式分解中,因子2的个数大于5的个数,所以如果存在一个因子5,那么它必然对应着n!末尾的一个0。(只求5的指数即可)


应用2:对于给定的素数p,C(2n,n)恰好被p整除多少次?

           输入:输入n和p,(1≤n,p≤1 000 000 000)

          输出:输出给出的C(2n,n)被素数p整除的次数,当不能整除时,次数为0。

         样例输入:2  2

                            2  3

         样例输出: 1

                            1

分析ans=(【2n/p】-2【n/p】)+(【2n/p^2】-2【n/p^2】)+......... +(【2n/p^k】-2【n/p^k】)  其中k=log p(2n)向下取整

代码:

#include <iostream>
#include <cstdio>
#include <cmath>

using namespace std;

int main()
{
	int n,p;
	int ans,c,s;
	while(scanf("%d%d",&n,&p)!=EOF)
	{
		s=int(log10(2.0*n)/log10(p));
		c=1;
		ans=0;
		for(int i=1;i<=s;i++)
		{
			c*=p;
			ans+=int(2*n/c)-2*int(n/c);
		}
		printf("%d\n",ans);
	}	
	return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值