A*路径搜寻算法

本文介绍了A*路径搜寻算法,一种常用于游戏NPC和BOT移动计算的最短路径算法。A*算法结合了Dijkstra算法和BFS的特性,通过启发式搜索提高效率。文章详细讲解了算法原理,包括g(n)、h(n)的定义,并讨论了曼哈顿距离、欧氏距离和切比雪夫距离三种估价函数。此外,还对比了A*与Dijkstra、DFS、BFS的区别,并提供了不同距离估算方式的实例分析。
摘要由CSDN通过智能技术生成

A*搜寻算法,俗称A星算法。这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的NPC(Non-Player-ControlledCharacter)的移动计算,或线上游戏的BOT(ROBOT)的移动计算上。该算法像Dijkstra算法一样,可以找到一条最短路径;也像BFS一样,进行启发式的搜索。

A*算法是一种启发式搜索算法,启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标。这样可以省略大量无谓的搜索路径,提高了效率。在启发式搜索中,对位置的估价是十分重要的。采用了不同的估价可以有不同的效果。

A*算法的公式为:f(n)=g(n)+h(n),g(n)表示从起点到任意顶点n的实际距离,h(n)表示任意顶点n到目标顶点的估算距离。 这个公式遵循以下特性:

  • 如果h(n)为0,只需求出g(n),即求出起点到任意顶点n的最短路径,则转化为单源最短路径问题,即Dijkstra算法
  • 如果h(n)<=“n到目标的实际距离”,则一定可以求出最优解。而且h(n)越小,需要计算的节点越多,算法效率越低。

对于函数h(n),估算距离常用的方法有:

  • 曼哈顿距离:定义曼哈顿距离的正式意义为L1-距离或城市区块距离,也就是在欧几里德空间的固定直角坐标系上两点所形成的线段对轴产生的投影的距离总和。例如在平面上,坐标(x1,y1)的点P1与坐标(x2, y2)的点P2的曼哈顿距离为:|x1 - x2| + |y1 - y2|。
  • 欧氏距离:是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。在二维和三维空间中的欧氏距离的就是两点之间的距离。例如在平面上,坐标(x1,y1)的点P1与坐标(x2, y2)的点P2的欧氏距离为: sqrt((x1-x2)^2+(y1-y2)^2 )。
  • 切比雪夫距离:是两个向量之间各分量差值的最大值。例如在平面上,坐标(x1, y1)的点P1与坐标(x2, y2)的点P2的切比雪夫距离为:max(|x1 - x2| , |y1 - y2|)。

A*算法实现伪代码:

function A*(start,goal)
    closedset := the empty set
    openset := {start} 
    came_from := the empty map
 
    g_score[start] := 0
    h_score[start] := heuristi
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值