函数

原创 2015年11月18日 10:59:28

函数

1什么是函数

http://docs.python.org/2/library/functions.html  官方手册

2调用函数

Python内置了很多有用的函数,我们可以直接调用。

要调用一个函数,需要知道函数名称参数,比如求绝对值的函数 abs,它接收一个参数。

可以直接从Python的官方网站查看文档:

http://docs.python.org/2/library/functions.html#abs

也可以在交互式命令行通过 help(abs) 查看abs函数的帮助信息。

调用 abs 函数:

>>>abs(100)

100

>>>abs(-20)

20

>>>abs(12.34)

12.34

调用函数的时候,如果传入的参数数量不对,会报TypeError的错误,并且Python会明确地告诉你:abs()有且仅有1个参数,但给出了两个:

>>>abs(1, 2)

Traceback (mostrecent call last):

  File "<stdin>", line 1, in<module>

TypeError:abs() takes exactly one argument (2 given)

如果传入的参数数量是对的,但参数类型不能被函数所接受,也会报TypeError的错误,并且给出错误信息:str是错误的参数类型:

>>>abs('a')

Traceback (mostrecent call last):

  File "<stdin>", line 1, in<module>

TypeError: badoperand type for abs(): 'str'

而比较函数 cmp(x, y) 就需要两个参数,如果 x<y,返回 -1,如果 x==y,返回 0,如果 x>y,返回 1

>>>cmp(1, 2)

-1

>>>cmp(2, 1)

1

>>>cmp(3, 3)

0

Python内置的常用函数还包括数据类型转换函数,比如   int()函数可以把其他数据类型转换为整数:

>>>int('123')

123

>>>int(12.34)

12

str()函数把其他类型转换成 str

>>>str(123)

'123'

>>>str(1.23)

'1.23'

 

3编写函数

Python中,定义一个函数要使用 def 语句,依次写出函数名括号、括号中的参数冒号:,然后,在缩进块中编写函数体,函数的返回值用 return 语句返回。

我们以自定义一个求绝对值的 my_abs 函数为例:

def my_abs(x):

    if x >= 0:

        return x

    else:

        return -x

请注意,函数体内部的语句在执行时,一旦执行到return时,函数就执行完毕,并将结果返回。因此,函数内部通过条件判断和循环可以实现非常复杂的逻辑。

如果没有return语句,函数执行完毕后也会返回结果,只是结果为 None

return None可以简写为return

空函数

如果想定义一个什么事也不做的空函数,可以用pass语句:

def nop():

    pass

pass语句什么都不做,那有什么用?实际上pass可以用来作为占位符,比如现在还没想好怎么写函数的代码,就可以先放一个pass,让代码能运行起来。

pass还可以用在其他语句里,比如:

if age >=18:

    pass

缺少了pass,代码运行就会有语法错误。

 

参数检查

调用函数时,如果参数个数不对,Python解释器会自动检查出来,并抛出TypeError:

>>> my_abs(1, 2)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: my_abs() takes exactly 1 argument(2 given)

但是如果参数类型不对,Python解释器就无法帮我们检查。试试my_abs和内置函数abs的差别:

>>> my_abs('A')

'A'

>>> abs('A')

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: bad operand type for abs():'str'

当传入了不恰当的参数时,内置函数abs会检查出参数错误,而我们定义的my_abs没有参数检查,所以,这个函数定义不够完善。

让我们修改一下my_abs的定义,对参数类型做检查,只允许整数和浮点数类型的参数。数据类型检查可以用内置函数isinstance实现:

def my_abs(x):

    ifnot isinstance(x, (int, float)):

       raise TypeError('bad operand type')

    ifx >= 0:

       return x

    else:

       return -x

添加了参数检查后,如果传入错误的参数类型,函数就可以抛出一个错误:

>>> my_abs('A')

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<stdin>", line 3, in my_abs

TypeError: bad operand type

错误和异常处理将在后续讲到

 

4返回多值

函数可以返回多个值吗?答案是肯定的。

比如在游戏中经常需要从一个点移动到另一个点,给出坐标、位移和角度,就可以计算出新的坐标:

# math包提供了sin() cos()函数,我们先用import引用它:

import math

def move(x, y,step, angle):

    nx = x + step * math.cos(angle)

    ny = y - step * math.sin(angle)

    return nx, ny

这样我们就可以同时获得返回值:

>>> x,y = move(100, 100, 60, math.pi / 6)

>>>print x, y

151.96152422770.0

但其实这只是一种假象,Python函数返回的仍然是单一值:

>>> r= move(100, 100, 60, math.pi / 6)

>>>print r

(151.96152422706632,70.0)

print打印返回结果,原来返回值是一个tuple

但是,在语法上,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值,所以,Python的函数返回多值其实就是返回一个tuple,但写起来更方便。

5函数的参数

定义函数的时候,我们把参数的名字和位置确定下来,函数的接口定义就完成了。对于函数的调用者来说,只需要知道如何传递正确的参数,以及函数将返回什么样的值就够了,函数内部的复杂逻辑被封装起来,调用者无需了解。

Python的函数定义非常简单,但灵活度却非常大。除了正常定义的必选参数外,还可以使用默认参数、可变参数和关键字参数,使得函数定义出来的接口,不但能处理复杂的参数,还可以简化调用者的代码。

默认参数

我们仍以具体的例子来说明如何定义函数的默认参数。先写一个计算x2的函数:

defpower(x):

    return x * x

当我们调用power函数时,必须传入有且仅有的一个参数x

>>> power(5)

25

>>> power(15)

225

现在,如果我们要计算x3怎么办?可以再定义一个power3函数,但是如果要计算x4x5……怎么办?我们不可能定义无限多个函数。

你也许想到了,可以把power(x)修改为power(x, n),用来计算xn,说干就干:

defpower(x, n):

    s = 1

    while n > 0:

        n = n - 1

        s = s * x

    return s

对于这个修改后的power函数,可以计算任意n次方:

>>> power(5, 2)

25

>>> power(5, 3)

125

但是,旧的调用代码失败了,原因是我们增加了一个参数,导致旧的代码无法正常调用:

>>> power(5)

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

TypeError: power() takes exactly 2 arguments (1 given)

这个时候,默认参数就排上用场了。由于我们经常计算x2,所以,完全可以把第二个参数n的默认值设定为2

defpower(x, n=2):

    s = 1

    while n > 0:

        n = n - 1

        s = s * x

    return s

这样,当我们调用power(5)时,相当于调用power(5, 2)

>>> power(5)

25

>>> power(5, 2)

25

而对于n > 2的其他情况,就必须明确地传入n,比如power(5,3)

从上面的例子可以看出,默认参数可以简化函数的调用。设置默认参数时,有几点要注意:

一是必选参数在前,默认参数在后,否则Python的解释器会报错(思考一下为什么默认参数不能放在必选参数前面);

二是如何设置默认参数。

当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。

使用默认参数有什么好处?最大的好处是能降低调用函数的难度。

举个例子,我们写个一年级小学生注册的函数,需要传入namegender两个参数:

defenroll(name, gender):

    print'name:', name

    print'gender:', gender

这样,调用enroll()函数只需要传入两个参数:

>>> enroll('Sarah', 'F')

name: Sarah

gender: F

如果要继续传入年龄、城市等信息怎么办?这样会使得调用函数的复杂度大大增加。

我们可以把年龄和城市设为默认参数:

defenroll(name, gender, age=6,city='Beijing'):

    print'name:', name

    print'gender:', gender

    print'age:', age

    print'city:', city

这样,大多数学生注册时不需要提供年龄和城市,只提供必须的两个参数:

>>> enroll('Sarah', 'F')

Student:

name: Sarah

gender: F

age: 6

city: Beijing

只有与默认参数不符的学生才需要提供额外的信息:

enroll('Bob', 'M', 7)

enroll('Adam', 'M', city='Tianjin')

可见,默认参数降低了函数调用的难度,而一旦需要更复杂的调用时,又可以传递更多的参数来实现。无论是简单调用还是复杂调用,函数只需要定义一个。

有多个默认参数时,调用的时候,既可以按顺序提供默认参数,比如调用enroll('Bob', 'M', 7),意思是,除了namegender这两个参数外,最后1个参数应用在参数age上,city参数由于没有提供,仍然使用默认值。

也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上。比如调用enroll('Adam', 'M', city='Tianjin'),意思是,city参数用传进去的值,其他默认参数继续使用默认值。

默认参数很有用,但使用不当,也会掉坑里。默认参数有个最大的坑,演示如下:

先定义一个函数,传入一个list,添加一个END再返回:

defadd_end(L=[]):

    L.append('END')

    return L

当你正常调用时,结果似乎不错:

>>> add_end([1, 2, 3])

[1, 2, 3, 'END']

>>> add_end(['x', 'y', 'z'])

['x', 'y', 'z', 'END']

当你使用默认参数调用时,一开始结果也是对的:

>>> add_end()

['END']

但是,再次调用add_end()时,结果就不对了:

>>> add_end()

['END', 'END']

>>> add_end()

['END', 'END', 'END']

很多初学者很疑惑,默认参数是[],但是函数似乎每次都记住了上次添加了'END'后的list

原因解释如下:

Python函数在定义的时候,默认参数L的值就被计算出来了,即[],因为默认参数L也是一个变量,它指向对象[],每次调用该函数,如果改变了L的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的[]了。

所以,定义默认参数要牢记一点:默认参数必须指向不变对象!

要修改上面的例子,我们可以用None这个不变对象来实现:

defadd_end(L=None):

    if L isNone:

        L = []

    L.append('END')

    return L

现在,无论调用多少次,都不会有问题:

>>> add_end()

['END']

>>> add_end()

['END']

为什么要设计strNone这样的不变对象呢?因为不变对象一旦创建,对象内部的数据就不能修改,这样就减少了由于修改数据导致的错误。此外,由于对象不变,多任务环境下同时读取对象不需要加锁,同时读一点问题都没有。我们在编写程序时,如果可以设计一个不变对象,那就尽量设计成不变对象。

可变参数

Python函数中,还可以定义可变参数。顾名思义,可变参数就是传入的参数个数是可变的,可以是1个、2个到任意个,还可以是0个。

我们以数学题为例子,给定一组数字abc……,请计算a2 + b2 + c2 + ……

要定义出这个函数,我们必须确定输入的参数。由于参数个数不确定,我们首先想到可以把abc……作为一个listtuple传进来,这样,函数可以定义如下:

defcalc(numbers):

    sum = 0

    for n in numbers:

        sum = sum +n * n

    return sum

但是调用的时候,需要先组装出一个listtuple

>>> calc([1, 2, 3])

14

>>> calc((1, 3, 5, 7))

84

如果利用可变参数,调用函数的方式可以简化成这样:

>>> calc(1, 2, 3)

14

>>> calc(1, 3, 5, 7)

84

所以,我们把函数的参数改为可变参数:

defcalc(*numbers):

    sum = 0

    for n in numbers:

        sum = sum +n * n

    return sum

定义可变参数和定义listtuple参数相比,仅仅在参数前面加了一个*号。在函数内部,参数numbers接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数:

>>> calc(1, 2)

5

>>> calc()

0

如果已经有一个list或者tuple,要调用一个可变参数怎么办?可以这样做:

>>> nums = [1, 2, 3]

>>> calc(nums[0], nums[1],nums[2])

14

这种写法当然是可行的,问题是太繁琐,所以Python允许你在listtuple前面加一个*号,把listtuple的元素变成可变参数传进去:

>>> nums = [1, 2, 3]

>>> calc(*nums)

14

这种写法相当有用,而且很常见。

关键字参数

可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。而关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。请看示例:

defperson(name, age, **kw):

    print'name:', name, 'age:',age, 'other:', kw

函数person除了必选参数nameage外,还接受关键字参数kw。在调用该函数时,可以只传入必选参数:

>>> person('Michael', 30)

name: Michael age: 30other: {}

也可以传入任意个数的关键字参数:

>>> person('Bob', 35, city='Beijing')

name: Bob age: 35 other: {'city': 'Beijing'}

>>> person('Adam', 45, gender='M', job='Engineer')

name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}

关键字参数有什么用?它可以扩展函数的功能。比如,在person函数里,我们保证能接收到nameage这两个参数,但是,如果调用者愿意提供更多的参数,我们也能收到。试想你正在做一个用户注册的功能,除了用户名和年龄是必填项外,其他都是可选项,利用关键字参数来定义这个函数就能满足注册的需求。

和可变参数类似,也可以先组装出一个dict,然后,把该dict转换为关键字参数传进去:

>>> kw = {'city': 'Beijing', 'job': 'Engineer'}

>>> person('Jack', 24, city=kw['city'], job=kw['job'])

name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

当然,上面复杂的调用可以用简化的写法:

>>> kw = {'city': 'Beijing', 'job': 'Engineer'}

>>> person('Jack', 24, **kw)

name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

参数组合

Python中定义函数,可以用必选参数、默认参数、可变参数和关键字参数,这4种参数都可以一起使用,或者只用其中某些,但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数和关键字参数。

比如定义一个函数,包含上述4种参数:

deffunc(a, b, c=0, *args, **kw):

    print'a=', a, 'b =', b,'c =', c, 'args=', args, 'kw =', kw

在函数调用的时候,Python解释器自动按照参数位置和参数名把对应的参数传进去。

>>> func(1, 2)

a = 1 b = 2 c =0 args = () kw = {}

>>> func(1, 2, c=3)

a = 1 b = 2 c =3 args = () kw = {}

>>> func(1, 2, 3, 'a', 'b')

a = 1 b = 2 c =3 args = ('a', 'b') kw = {}

>>> func(1, 2, 3, 'a', 'b', x=99)

a = 1 b = 2 c =3 args = ('a', 'b') kw = {'x': 99}

最神奇的是通过一个tupledict,你也可以调用该函数:

>>> args = (1, 2, 3, 4)

>>> kw = {'x': 99}

>>> func(*args, **kw)

a = 1 b = 2 c =3 args = (4,) kw = {'x': 99}

所以,对于任意函数,都可以通过类似func(*args, **kw)的形式调用它,无论它的参数是如何定义的。

小结

Python的函数具有非常灵活的参数形态,既可以实现简单的调用,又可以传入非常复杂的参数。

默认参数一定要用不可变对象,如果是可变对象,运行会有逻辑错误!

要注意定义可变参数和关键字参数的语法:

*args是可变参数,args接收的是一个tuple

**kw是关键字参数,kw接收的是一个dict

以及调用函数时如何传入可变参数和关键字参数的语法:

可变参数既可以直接传入:func(1, 2, 3),又可以先组装listtuple,再通过*args传入:func(*(1,2, 3))

关键字参数既可以直接传入:func(a=1, b=2),又可以先组装dict,再通过**kw传入:func(**{'a': 1, 'b': 2})

使用*args**kwPython的习惯写法,当然也可以用其他参数名,但最好使用习惯用法。

 

6递归函数

在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可以看出:

fact(n) = n! =1 * 2 * 3 * ... * (n-1) * n = (n-1)! * n = fact(n-1) * n

所以,fact(n)可以表示为 n * fact(n-1),只有n=1时需要特殊处理。

于是,fact(n)用递归的方式写出来就是:

def fact(n):

    if n==1:

        return 1

    return n * fact(n - 1)

上面就是一个递归函数。可以试试:

>>>fact(1)

1

>>>fact(5)

120

>>>fact(100)

93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000L

如果我们计算fact(5),可以根据函数定义看到计算过程如下:

===> fact(5)

===> 5 *fact(4)

===> 5 * (4* fact(3))

===> 5 * (4* (3 * fact(2)))

===> 5 * (4* (3 * (2 * fact(1))))

===> 5 * (4* (3 * (2 * 1)))

===> 5 * (4* (3 * 2))

===> 5 * (4* 6)

===> 5 * 24

===> 120

递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试计算 fact(10000)

版权声明:本文为博主原创文章,未经博主允许不得转载。

Windows.API - 函数 接口 编程案例教程

  • 2017年12月11日 19:43
  • 47.72MB
  • 下载

vector 常用函数方法 查了半天 总结一下

vector是C++标准模板库中的部分内容,中文偶尔译作“容器”,但并不准确。它是一个多功能的,能够操作多种数据结构和算法的模板类和函数库。vector之所以被认为是一个容器,是因为它能够像容器一样存...

各种函数零点问题的处理

  • 2017年12月10日 10:41
  • 1019KB
  • 下载

PostgreSQL如何实现MySQL中的group_concat聚集函数(简单的拼接功能)

1.postgreSQL中没有现成的group_concat聚集函数 2.postgreSQL可以自定义聚集函数一.首先我们要知道MySQL中的group_concat聚集函数是干什么的? gro...

pb扩充函数

  • 2017年12月07日 15:22
  • 13.24MB
  • 下载

linux网络编程之posix 线程(一):线程模型、pthread 系列函数 和 简单多线程服务器端程序

一、posix 线程概述 我们知道,进程在各自独立的地址空间中运行,进程之间共享数据需要用进程间通信机制,有些情况需要在一个进程中同时执行多个控制流程,这时候线程就派上了用场,比如实现一个图形界面的下...

Excel函数活用范例大辞典(文字版)

  • 2017年12月10日 00:04
  • 56.49MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:函数
举报原因:
原因补充:

(最多只允许输入30个字)