资产分类及操作策略

不同置产之间坚持不同的投资策略,低风险资产由于操作频率较低从而降低了资产风险系数,高风险是在不断买卖中产生的 低风险资产由于操作的频率以及投资的不连续转换为高风险资产 低风险资产不能大规模转移到高风险资产 低风险资产也不能转换为现金资产 低风险 高风险 现金 三大类资产在转换过程中直接产生...

2019-05-05 11:08:34

阅读数 107

评论数 0

年轻人应该干的事情

年轻人首先表达了对这位著名物理学家的崇拜,然后对于曾在几年前明确表示反对中国建造大对撞机的杨先生热切问道:“我想代表我所有的同学再问您一次,您现在对我们建造CEPC的想法有没有改变?” 清晰表明反对态度后,杨振宁强调“这是一个很重要的事情”。他建议大家去看他2016年在网上发表的一篇文章。 在...

2019-05-04 00:12:31

阅读数 83

评论数 0

linux下怎么退出vi编辑器,按esc没有用;vim recording

  Ctrl c 然后 Shift z z 保存退出 Ctrl z 直接退出不保存 有时敲exit也管用   vim recording功能介绍 使用vim时无意间触碰到q键,左下角出现“recording”这个标识,觉得好奇,遂在网上查了一下,然后这是vim的一个强大功能。他可以录制一...

2018-09-10 17:52:47

阅读数 7143

评论数 0

关于tensor的shape和dimension

刚把mnist又过了一遍,突然感觉对tensor的shape有了新的理解,虽然很基础,还是想分享一下 关于tensor的维度,也就是阶啦,从认知上理解,一维就是线(数组或者向量),二维就是面(矩阵),三维就是体(数据体),四维是数据阵列 等等等等;新的理解是在表现方式上的,也就是打印出的样子,例如...

2019-05-24 23:20:30

阅读数 0

评论数 0

tensor.get_shape(x) 与 tf.shape(a)

两者相同在于都能得到一个tensor的shape。 不同点: 1.使用对象:get_shape()只能是tensor作为使用对象,shape()的对象a可以是tensor, list, array 2.返回值:get_shape()返回一个tuple,shape()返回一个tensor ...

2019-05-24 23:17:40

阅读数 0

评论数 0

主成分分析(PCA)与数据白化

matlab 实例 1.图像加载 12x12 的patch,共10000个,转换为 144x10000的矩阵,即数据是144维 x = sampleIMAGESRAW(); 随机显示200个图像块,如下图: 2.零均值化 meanVal = mean(x); x = bsxfun(@...

2019-05-24 23:17:12

阅读数 0

评论数 0

高斯消元法求解线性方程组

线性方程组是线性代数的核心考点之一,命题率比较高。线性方程组求解的基本方法就是高斯消元法。今天我们就给大家简单讲解如何利用高斯消元法求解线性方程组的解。 首先,我们先来了解一下线性方程组和高斯消元法的相关概念。 一、线性方程组 二、高斯消元法 1.线性方程组的初等变换 我们对...

2019-05-23 21:32:29

阅读数 1

评论数 0

微分、差分的区别

  区别:   微分是差分的线性部分,Δy=y(x+Δx)-y(x)=y'(x)Δx+....=y'(x)dx+.... 自变量的差分就是微分,也就是Δx=dx   微分:   在数学中,微分是对函数的局部变化的一种线性描述。微分可以近似地描述当函数自变量的变化量取值作足够小时,函数的值是怎样改变...

2019-05-23 18:38:15

阅读数 8

评论数 0

两个奇怪的TF索引操作和比较类函数

tf.invert_permutation(x) 这是个奇怪的函数,之所以说奇怪,是因为学到目前为止,我还不清楚它有什么用,这个函数的功能是这么描述的:将x中元素的值当作索引,返回新的张量,用公式表达如下: 设张量X=[x1,x2,x3,…xn],那么Y=tf.invert_permutati...

2019-05-23 09:20:16

阅读数 1

评论数 0

Clip_by_norm 函数理解

1. 梯度裁剪场景 先看示例: optimizer = tf.train.AdamOptimizer(self.learning_rate) gradients, v = zip(*optimizer.compute_gradients(self.pretrain_loss)) gradien...

2019-05-15 20:43:02

阅读数 7

评论数 0

TensorFlow教程——梯度爆炸与梯度裁剪

在较深的网络,如多层CNN或者非常长的RNN,由于求导的链式法则,有可能会出现梯度消失(Gradient Vanishing)或梯度爆炸(Gradient Exploding )的问题。(这部分知识后面补充) 原理 问题:为什么梯度爆炸会造成训练时不稳定而且不收敛?梯度爆炸,其实就是偏导数很大...

2019-05-15 19:46:00

阅读数 5

评论数 0

numpy.transpose() 函数

numpy.transpose(*args)函数返回矩阵的转置矩阵。 a = array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7]], [[ 8, 9, 10, 11], [12, 13, 14, 15]]]) b =...

2019-05-11 12:07:29

阅读数 25

评论数 0

linspace 和 range

linspace() y = linspace(x1,x2) y = linspace(x1,x2,n) y = linspace(x1,x2)返回包含x1和x2之间的 100 个等间距点的行向量。 y = linspace(x1,x2,n)生成n个点。这些点的间距为(x2-x1)/(n-...

2019-05-11 12:03:28

阅读数 30

评论数 0

locals() 和 globals()

1、locals() 和 globals() 是python 的内建函数,他们提供了字典的形式访问局部变量和全局变量的方式。 def test(arg): a=1 b=2 data_dict = {} print locals() print globa...

2019-05-10 21:40:04

阅读数 23

评论数 0

Python eval 函数妙用

eval   功能:将字符串str当成有效的表达式来求值并返回计算结果。   语法:eval(source[, globals[, locals]]) -> value   参数:     source:一个Python表达式或函数compile()返回的代码对象     ...

2019-05-09 00:47:04

阅读数 29

评论数 0

fit,fit_transform,transform的区别

在使用PCA和NFC中有三个函数fit,fit_transform,transform区分不清各自的功能。通过测试,勉强了解各自的不同,在这里做一些笔记。 1.fit_transform是fit和transform的混合,相当于先调用fit再调用transform。 2.transform函数...

2019-05-07 22:01:54

阅读数 38

评论数 0

name_scope和variable scope

之所以会出现这两种类型的scope,主要是后者(variable scope)为了实现tensorflow中的变量共享机制:即为了使得在代码的任何部分可以使用某一个已经创建的变量,TF引入了变量共享机制,使得可以轻松的共享变量,而不用传一个变量的引用。具体解释如下: tensorflow中创建v...

2019-05-07 00:05:09

阅读数 11

评论数 0

地震时窗概念

时窗应该是做合成记录时的特征子波长度所对应的时间,至于这个特征子波,就是应该包含一个主波瓣,和一对次波瓣(再边上的可能没多大意义),又带宽控制,带宽越大,子波越短,分辩率越高。 ...

2019-05-06 10:58:39

阅读数 13

评论数 0

TensorFlow图变量tf.Variable的用法解析,后面的name属性和前面的变量名有什么关系?如果不同,在调用上以谁为准?

jjjj32481:后面的name属性和前面的变量名有什么关系?如果不同,在调用上以谁为准? UESTC_C2_403回复jjjj32481:name这个属性就是给变量取个名字。你可以用name这个属性函数查看一下,如果没有取名,那么输出就是以Variable开头的,如果有命名,比如上面的程序名...

2019-05-06 00:35:15

阅读数 33

评论数 0

细数储层预测过程中碰到的的几类采集脚印

现在储层预测过程中对地震资料的质控越来越严,因为大家都已意识到地震资料品质直接决定了储层预测成果的预测能力与可靠性。 采集脚印(footprint)本意是地震资料采集的专业术语。如果引申一下,对于储层预测而言,“采集脚印”可以是一个广义的概念,所有地震资料采集、处理过程中形成的“脚印”都叫“采集脚...

2019-05-05 17:47:52

阅读数 116

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭