# 沃尔什函数

## 拉德马赫函数

R ( k , t ) = s g n ( s i n ( 2 k π t ) ) k = 0 , 1 , 2 , . . . . . R(k, t) = sgn(sin(2^k\pi t)) \quad k = 0, 1, 2, .....

s g n ( x ) = { 1 , x > 0 − 1 , x < 0 sgn(x) = \begin{cases} 1,\quad x >0 \\ -1, \quad x < 0 \end{cases}

R(k, t)的定义域为[0，1）那么拉德马赫函数的图像如下图：

## 沃尔什函数

n = ∑ k = 0 m − 1 n k 2 k n k = 0   o r   1 n = \sum_{k=0}^{m-1} n_{k}2^k\quad n_{k}=0\space or \space1

W A L p ( n , t ) = ∏ k = 0 m − 1 R ( k + 1 , t ) n k t ∈ [ 0 , 1 ) WAL_{p}(n,t) = \prod_{k=0}^{m-1} R(k+1, t)^{n_{k}}\quad t\in [0,1)
R(k,t)是拉德马赫函数, m是能够表示n的二进制位数。

9 = 1 ∗ 2 3 + 0 ∗ 2 2 + 0 ∗ 2 1 + 1 ∗ 2 0 9 = 1 * 2^{3} + 0 * 2^{2} + 0 * 2^{1} + 1 * 2^{0}
W A L p ( 9 , t ) = R ( 1 , t ) R ( 4 , t ) WAL_{p}(9,t)\quad = R(1,t)R(4, t)

## 沃尔什函数指数形式

t = ∑ j = 1 + ∞ t j 2 − j t j = 0   o r   1 t = \sum_{j=1}^{+\infty} t_{j} 2^{-j}\quad t_{j} = 0\space or \space 1

{ R ( 0 , t ) = 1 R ( k , t ) = ( − 1 ) t k t = 1 , 2 , 3 , . . . . \begin {cases} R(0, t) = 1 \\ R(k, t) = (-1)^{t_{k}} \quad t= 1, 2,3,.... \end {cases}

s i n ( π 2 k ∗ ∑ j = 1 + ∞ t j 2 − j ) = s i n ( π ∑ j = 1 + ∞ t j 2 k − j ) sin(\pi2^{k}* \sum_{j=1}^{+\infty} t_{j} 2^{-j}) = sin(\pi\sum_{j=1}^{+\infty}t_{j}2^{k-j})
= s i n ( π ∗ ( ∑ j = 1 k − 1 t j 2 k − j + t k + ∑ j = k + 1 + ∞ t j 2 k − j ) ) =sin(\pi *(\sum_{j=1}^{k-1}t_{j}2^{k-j} + t_{k} + \sum_{j=k+1}^{+\infty}t_{j}2^{k-j}))
= s i n ( π ∗ ( ∑ j = 1 k − 1 t k − j 2 j + t k + ∑ j = 1 + ∞ t j + k 2 − j ) ) = sin(\pi * (\sum_{j=1}^{k-1}t_{k-j}2^{j}+ t_{k} +\sum_{j=1}^{+\infty}t_{j+k}2^{-j}))

R ( k , t ) = { 1 , t k = 1 0 , t k = 0 → R ( k , t ) = ( − 1 ) t k R(k,t) = \begin {cases} 1, \quad t_{k} = 1 \\ 0, \quad t_{k} = 0 \end {cases} \quad \rightarrow R(k,t) = (-1)^{t_{k}}
tk就是二进制小数点后第k位的值。

W A L p ( n , t ) = ( − 1 ) ∑ k = 0 m − 1 n k t k + 1 WAL_{p}(n,t) = (-1)^{\sum_{k=0}^{m-1}n_{k}t_{k+1}}
n确定m和nk的值。tk就是上面的定义。

03-06
04-24

02-02 4055
08-02 6467
04-09 6111
07-30 97
10-14 1万+