【第22期】观点:IT 行业加班,到底有没有价值?

python用训练好的model分类

原创 2016年05月31日 12:05:27
#coding=utf-8
#加载必要的库
import numpy as np
import sys,os
#import caffe
#设置当前目录
caffe_root = '/mnt/caffe/' 
sys.path.insert(0, caffe_root + 'python')
import caffe
os.chdir(caffe_root)

net_file=caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt'
caffe_model=caffe_root + 'data/ilsvrc12/bvlc_reference_caffenet.caffemodel'
mean_file=caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy'

net = caffe.Net(net_file,caffe_model,caffe.TEST)
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_mean('data', np.load(mean_file).mean(1).mean(1))
transformer.set_raw_scale('data', 255) 
transformer.set_channel_swap('data', (2,1,0))

im=caffe.io.load_image(caffe_root+'examples/images/cat.jpg')
net.blobs['data'].data[...] = transformer.preprocess('data',im)
out = net.forward()


imagenet_labels_filename = caffe_root + 'data/ilsvrc12/synset_words.txt'
labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\t')

top_k = net.blobs['prob'].data[0].flatten().argsort()[-1:-6:-1]
for i in np.arange(top_k.size):
    print top_k[i], labels[top_k[i]]


结果输出排名前五的图像概率。如图~

版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

caffe的python接口学习:用训练好的模型(caffemodel或者h5)来分类新的图片

使用Python接口调用训练好的模型进行图像分类,需要准备以下文件: (1)网络模型结构文件——deploy文件,该文件的生成可参考博文http://blog.csdn.net/u010417185/...

Python机器学习库

原文:http://qxde01.blog.163.com/blog/static/67335744201368101922991/   <span style

程序员升职加薪指南!还缺一个“证”!

CSDN出品,立即查看!

DeepLearning(基于caffe)实战项目(9)--Python测试训练好的model

之前曾用Matlab测试训练好的model(详细见:http://blog.csdn.net/sihailongwang/article/details/72700482),现在打算用Python测试...

深度学习与计算机视觉系列(2)_图像分类与KNN

作者: 寒小阳 &amp;&amp;龙心尘 时间:2015年11月。 出处:http://blog.csdn.

基于libsvm的中文文本分类原型

支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)