python用训练好的model分类

原创 2016年05月31日 12:05:27
#coding=utf-8
#加载必要的库
import numpy as np
import sys,os
#import caffe
#设置当前目录
caffe_root = '/mnt/caffe/' 
sys.path.insert(0, caffe_root + 'python')
import caffe
os.chdir(caffe_root)

net_file=caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt'
caffe_model=caffe_root + 'data/ilsvrc12/bvlc_reference_caffenet.caffemodel'
mean_file=caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy'

net = caffe.Net(net_file,caffe_model,caffe.TEST)
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_mean('data', np.load(mean_file).mean(1).mean(1))
transformer.set_raw_scale('data', 255) 
transformer.set_channel_swap('data', (2,1,0))

im=caffe.io.load_image(caffe_root+'examples/images/cat.jpg')
net.blobs['data'].data[...] = transformer.preprocess('data',im)
out = net.forward()


imagenet_labels_filename = caffe_root + 'data/ilsvrc12/synset_words.txt'
labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\t')

top_k = net.blobs['prob'].data[0].flatten().argsort()[-1:-6:-1]
for i in np.arange(top_k.size):
    print top_k[i], labels[top_k[i]]


结果输出排名前五的图像概率。如图~

版权声明:本文为博主原创文章,未经博主允许不得转载。

python接口调用已训练好的caffe模型测试分类

训练好了model后,可以通过python调用caffe的模型,然后进行模型测试的输出。 本次测试主要依靠的模型是在caffe模型里面自带训练好的结构参数:~/caffe/models/bvlc_re...
  • Baterforyou
  • Baterforyou
  • 2017年05月08日 19:57
  • 2152

caffe+python 使用训练好的VGG16模型 对 单张图片进行分类,输出置信度

网上看了一堆都是图片转lmdb格式,然后测试总的准确率,我想测试每张图片的top1,top2以及对应置信度是多少,摸索了一下午+一晚上终于搞定,期间遇到不少坑!!!同时感谢实验室博士师兄一块帮我找bu...
  • tangwenbo124
  • tangwenbo124
  • 2016年10月02日 22:12
  • 12325

用训练好的caffemodel来进行分类

现在我正在利用imagenet进行finetune训练,待训练好模型,下一步就是利用模型进行分类。故转载一些较有效的相关博客。 caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 exa...
  • dcxhun3
  • dcxhun3
  • 2016年07月25日 10:37
  • 11048

机器学习-Python中训练模型的保存和再使用

在做模型训练的时候,尤其是在训练集上做交叉验证,通常想要将模型保存下来,然后放到独立的测试集上测试,下面介绍的是python中训练模型的保存和再使用。 scikit-learn已经有了模型持久化的操...
  • sherri_du
  • sherri_du
  • 2016年08月13日 10:52
  • 5950

Python中asarray用法

通过在编译环境中输入 import numpy help(numpy.asarray) Help on function asarray in module numpy.core.numeri...
  • maoersong
  • maoersong
  • 2014年04月01日 10:29
  • 18560

Python日记——model的使用

学习使用model主要掌握以下几点 数据库配置 命令行操作 新建model model的增删查改 manager的使用 后台页面管理model 1.首先是数据库配置一般新建的django项目都是配置为...
  • qq_32198277
  • qq_32198277
  • 2016年07月15日 08:42
  • 4386

python学习——编写Model

有了ORM,我们就可以把Web App需要的3个表用Model表示出来: import time, uuid from orm import Model, StringField, BooleanF...
  • youzhouliu
  • youzhouliu
  • 2016年08月02日 09:17
  • 1301

Django笔记教程:三、Model进阶

Model 进阶学习简介Django经常被用于一些创业团队,乃是因为其非常适合敏捷开发,开发效率非常之高。Model 作为Django重要组成部分也是亮点之一,着实需要我们花时间好好梳理一遍。 ...
  • alvine008
  • alvine008
  • 2015年11月24日 16:54
  • 5585

python model字段类型 速查表

V=models.CharField(max_length=None[, **options])    #varchar V=models.EmailField([max_length=75, **...
  • u013177568
  • u013177568
  • 2017年03月16日 18:35
  • 483

caffe学习(六):使用python调用训练好的模型来分类(Ubuntu)

在caffe的学习过程中,我发现我需要一个模板的程序来方便我测试训练的模型。我在上一篇博客中(caffe学习(五):cifar-10数据集训练及测试(Ubuntu) ),最后测试训练好的模型时是修改c...
  • hongbin_xu
  • hongbin_xu
  • 2017年07月31日 00:12
  • 744
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:python用训练好的model分类
举报原因:
原因补充:

(最多只允许输入30个字)