集群RPC通信

原创 2015年11月20日 13:39:20

        RPC即远程过程调用,它的提出旨在消除通信细节、屏蔽繁杂且易错的底层网络通信操作,像调用本地服务一般地调用远程服务,让业务开发者更多关注业务开发而不必考虑网络、硬件、系统的异构复杂环境。

        先看看集群中RPC的整个通信过程,假设从节点node1开始一个RPC调用,

①先将待传递的数据放到NIO集群通信框架(这里使用的是tribes框架)中;

②由于使用的是NIO模式,线程无需阻塞直接返回;

③由于与集群其他节点通信需要花销若干时间,为了提高CPU使用率当前线程应该放弃CPU的使用权进行等待操作;

NIO集群通信框架tribes接收到node2节点的响应消息,并将消息封装成Response对象保存至响应数组;

tribes接收到node4节点的响应消息,由于是使用了并行通信,所以node4可能比node3先返回消息,并将消息封装成Response对象保存至响应数组;

tribes最后接收到node3节点的响应消息,并将消息封装成Response对象保存至响应数组;

⑦现在所有节点的响应都已经收集完毕,是时候通知刚刚被阻塞的那条线程了,原来的线程被notify醒后拿到所有节点的响应Response[]进行处理,至此完成了整个集群RPC过程。


 


        上面整个过程是在只有一条线程的情况下,一切看起来没什么问题,但如果有多条线程并发调用则会导致一个问题:线程与响应的对应关系将被打乱,无法确定哪个线程对应哪几个响应。因为NIO通信框架不会每个线程都独自使用一个socket通道,为提高性能一般都是使用长连接,所有线程公用一个socket通道,这时就算线程一比线程二先放入tribes也不能保证响应一比响应二先接收到,所以接收到响应一后不知道该通知线程一还是线程二。只有解决了这个问题才能保证RPC调用的正确性。

        要解决线程与响应对应的问题就需要维护一个线程响应关系列表,响应从关系列表中就能查找对应的线程,如下图,在发送之前生成一个UUID标识,此标识要保证同socket中唯一,再把UUID与线程对象关系对应起来,可使用Map数据结构实现,UUID的值作为key,线程对应的锁对象为value。接着制定一个协议报文,UUID作为报文的其中一部分,报文发往另一个节点node2后将响应信息message放入报文中并返回,node1对接收到的报文进行解包根据UUID去查找并唤起对应的线程,告诉它“你要的消息已经收到,往下处理吧”。但在集群环境下,我们更希望是集群中所有节点的消息都接收到了才往下处理,如下图下半部分,一个UUID1的请求报文会发往node2node3node4三个节点,这时假如只接收到一个响应则不唤起线程,直到node2node3对应UUID1的响应报文都接收到后才唤起对应线程往下执行。同样地,UUID2UUID3的报文消息都是如此处理,最后集群中对应的响应都能正确回到各自线程上。


 


        用简单代码实现一个RPC例子,选择一个集群通信框架负责底层通信,这里使用tribes,接着往下:

①定义一个RPC接口,这些方法是预留提供给上层具体逻辑处理的入口,replyRequest方法用于处理响应逻辑,leftOver方法用于残留请求的逻辑处理。

public interface RpcCallback {
    public Serializable replyRequest(Serializable msg, Member sender);
    public void leftOver(Serializable msg, Member sender);
}

②定义通信消息协议,实现Externalizable接口自定义序列化和反序列化,message用于存放响应消息,uuid标识用于关联线程,rpcId用于标识RPC实例,reply表示是否回复。

public class RpcMessage implements Externalizable {
protected Serializable message;
protected byte[] uuid;
protected byte[] rpcId;
protected boolean reply = false;
public RpcMessage() {
}
public RpcMessage(byte[] rpcId, byte[] uuid, Serializable message) {
this.rpcId = rpcId;
this.uuid = uuid;
this.message = message;
}
@Override
public void readExternal(ObjectInput in) throws IOException,ClassNotFoundException {
reply = in.readBoolean();
int length = in.readInt();
uuid = new byte[length];
in.readFully(uuid);
length = in.readInt();
rpcId = new byte[length];
in.readFully(rpcId);
message = (Serializable) in.readObject();
}
@Override
public void writeExternal(ObjectOutput out) throws IOException {
out.writeBoolean(reply);
out.writeInt(uuid.length);
out.write(uuid, 0, uuid.length);
out.writeInt(rpcId.length);
out.write(rpcId, 0, rpcId.length);
out.writeObject(message);
}
}

③响应类型,提供多种唤起线程的条件,一共四种类型,分别表示接收到第一个响应就唤起线程、接收到集群中大多数节点的响应就唤起线程、接收到集群中所有节点的响应才唤起线程、无需等待响应的无响应模式。

public class RpcResponseType {
public static final int FIRST_REPLY = 1;
public static final int MAJORITY_REPLY = 2;
public static final int ALL_REPLY = 3;
public static final int NO_REPLY = 4;
}

④响应对象,用于封装接收到的消息,Member在通信框架tribes是节点的抽象,这里用来表示来源节点。

public class RpcResponse {
private Member source;
private Serializable message;
public RpcResponse() {
}
public RpcResponse(Member source, Serializable message) {
this.source = source;
this.message = message;
}
public void setSource(Member source) {
this.source = source;
}
public void setMessage(Serializable message) {
this.message = message;
}
public Member getSource() {
return source;
}
public Serializable getMessage() {
return message;
}
}

RPC响应集,用于存放同个UUID的所有响应。

public class RpcCollector {
    public ArrayList<RpcResponse> responses = new ArrayList<RpcResponse>(); 
    public byte[] key;
    public int options;
    public int destcnt;
    public RpcCollector(byte[] key, int options, int destcnt) {
        this.key = key;
        this.options = options;
        this.destcnt = destcnt;
    }
    public void addResponse(Serializable message, Member sender){
    	RpcResponse resp = new RpcResponse(sender,message);
        responses.add(resp);
    }
    public boolean isComplete() {
        if ( destcnt <= 0 ) return true;
        switch (options) {
            case RpcResponseType.ALL_REPLY:
                return destcnt == responses.size();
            case RpcResponseType.MAJORITY_REPLY:
            {
                float perc = ((float)responses.size()) / ((float)destcnt);
                return perc >= 0.50f;
            }
            case RpcResponseType.FIRST_REPLY:
                return responses.size()>0;
            default:
                return false;
        }
    }
    public RpcResponse[] getResponses() {
        return responses.toArray(new RpcResponse[responses.size()]);
    }
}

RPC核心类,是整个RPC的抽象,它要实现tribes框架的ChannelListener接口,在messageReceived方法中处理接收到的消息。因为所有的消息都会通过此方法,所以它必须要根据key去处理对应的线程,同时它也要负责调用RpcCallback接口定义的相关的方法,例如响应请求的replyRequest方法和处理残留的响应leftOver方法,残留响应是指有时我们在接收到第一个响应后就唤起线程。

public class RpcChannel implements ChannelListener {
private Channel channel;
private RpcCallback callback;
private byte[] rpcId;
private int replyMessageOptions = 0;
private HashMap<byte[], RpcCollector> responseMap = new HashMap<byte[], RpcCollector>();
public RpcChannel(byte[] rpcId, Channel channel, RpcCallback callback) {
this.rpcId = rpcId;
this.channel = channel;
this.callback = callback;
channel.addChannelListener(this);
}
public RpcResponse[] send(Member[] destination, Serializable message,
int rpcOptions, int channelOptions, long timeout)
throws ChannelException {
int sendOptions = channelOptions& ~Channel.SEND_OPTIONS_SYNCHRONIZED_ACK;
byte[] key = UUIDGenerator.randomUUID(false);
RpcCollector collector = new RpcCollector(key, rpcOptions,
destination.length);
try {
synchronized (collector) {
if (rpcOptions != RpcResponseType.NO_REPLY)
responseMap.put(key, collector);
RpcMessage rmsg = new RpcMessage(rpcId, key, message);
channel.send(destination, rmsg, sendOptions);
if (rpcOptions != RpcResponseType.NO_REPLY)
collector.wait(timeout);
}
} catch (InterruptedException ix) {
Thread.currentThread().interrupt();
} finally {
responseMap.remove(key);
}
return collector.getResponses();
}
@Override
public void messageReceived(Serializable msg, Member sender) {
RpcMessage rmsg = (RpcMessage) msg;
byte[] key = rmsg.uuid;
if (rmsg.reply) {
RpcCollector collector = responseMap.get(key);
if (collector == null) {
callback.leftOver(rmsg.message, sender);
} else {
synchronized (collector) {
if (responseMap.containsKey(key)) {
collector.addResponse(rmsg.message, sender);
if (collector.isComplete())
collector.notifyAll();
} else {
callback.leftOver(rmsg.message, sender);
}
}
}
} else {
Serializable reply = callback.replyRequest(rmsg.message, sender);
rmsg.reply = true;
rmsg.message = reply;
try {
channel.send(new Member[] { sender }, rmsg, replyMessageOptions
& ~Channel.SEND_OPTIONS_SYNCHRONIZED_ACK);
} catch (Exception x) {
}
}
}
@Override
public boolean accept(Serializable msg, Member sender) {
if (msg instanceof RpcMessage) {
RpcMessage rmsg = (RpcMessage) msg;
return Arrays.equals(rmsg.rpcId, rpcId);
} else
return false;
}
}

⑦自定义一个RPC,它要实现RpcCallback接口,分别对请求处理和残留响应处理,这里请求处理仅仅是简单返回“hello,response for you!”作为响应消息,残留响应处理则是简单输出“receive a leftover message!”。假如整个集群有五个节点,由于接收模式设置成了FIRST_REPLY,所以每个只会接受一个响应消息,其他的响应都被当做残留响应处理。

public class MyRPC implements RpcCallback {
@Override
public Serializable replyRequest(Serializable msg, Member sender) {
RpcMessage mapmsg = (RpcMessage) msg;
mapmsg.message = "hello,response for you!";
return mapmsg;
}
@Override
public void leftOver(Serializable msg, Member sender) {
System.out.println("receive a leftover message!");
}
public static void main(String[] args) {
MyRPC myRPC = new MyRPC();
byte[] rpcId = new byte[] { 1, 1, 1, 1 };
byte[] key = new byte[] { 0, 0, 0, 0 };
String message = "hello";
int sendOptions = Channel.SEND_OPTIONS_SYNCHRONIZED_ACK
| Channel.SEND_OPTIONS_USE_ACK;
RpcMessage msg = new RpcMessage(rpcId, key, (Serializable) message);
RpcChannel rpcChannel = new RpcChannel(rpcId, channel, myRPC);
RpcResponse[] resp = rpcChannel.send(channel.getMembers(), msg,
RpcResponseType.FIRST_REPLY, sendOptions, 3000);
       while(true)
Thread.currentThread().sleep(1000);
}
}

可以看到通过上面的RPC封装后,上层可以把更多的精力关注到消息逻辑处理上面了,而不必关注具体的网络IO如何实现,屏蔽了繁杂重复的网络传输操作,为上层提供了很大的方便。


点击订购作者《Tomcat内核设计剖析》



版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

Nginx是什么,有什么优点?为什么选择Nginx做web服务器软件?

1、基础知识 代理服务器:     一般是指局域网内部的机器通过代理服务器发送请求到互联网上的服务器,代理服务器一般作用在客户端。应用比如:GoAgent,FQ神器.     一个完整的代理...

分布式通信方式-----分布式消息传递

背景: 随着社会的发展,经济的飞跃,传统的单系统模式(webApp+DB)已经很难满足业务场景的需要。企业系统开始不断演化成多个子系统并存协作的局面。大大降低了系统间的耦合性,更重要的便于子系统...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

集群间通信协议——TIPC简介

1.TIPC协议简介    TIPC是爱立信公司提出的一种透明进程间通信协议(Transparent Interprocess Communication), 主要适用于高可用(HAL)和动态集群环...

使用Restlet创建一个简单的web service(Creating a simple web service with Restlet)

Creating a simple web service with Restlet Posted by Philippe Van Nuijs at 16:12 Restlet是一个轻权的RESt...

架构漫谈(一):什么是架构?

总结一下,什么是架构,就是: 1. 根据要解决的问题,对目标系统的边界进行界定。 2. 并对目标系统按某个原则的进行切分。切分的原则,要便于不同的角色,对切分出来的部分,并行或串行开展工作,一...

为什么写《Tomcat内核设计剖析》

三四年前更多地还是做web业务开发,基本不关心web层以下的东西,但是每次出故障时面对现象都不能从脑子里形成由底层到应用层的完整的逻辑,往往只能分析到Web应用就无法继续往下,Web容器完全就是一个黑...

粗浅看 Tomcat系统架构分析

Tomcat的结构很复杂,但是Tomcat也非常的模块化,找到了Tomcat最核心的模块,就抓住了Tomcat的“七寸”。 关于Tomcat服务器的了解,算是很长时间的了解了,很好用。本博文中关于To...

《Tomcat内核设计剖析》京东评论过百

到京东看了下《Tomcat内核设计剖析》评论都一百多了,上个月也第二次印刷了,这里看下好评、中评和差评。好评:中评对于中评,请看 为什么《写Tomcat内核设计剖析》,就当是回复吧。差评这个物流慢应该...

粗浅看 逆波兰式算法

逆波兰表达式是一种十分有用的表达式,它将复杂表达式转换为可以依靠简单的操作得到计算结果的表达式。它的优势在于只用两种简单操作,入栈和出栈就可以搞定任何普通表达式的运算。 关于逆波兰式的学习,是对于堆和...

程序员的八重境界

看到一篇有趣的文章The Eight Levels of Programmers。以前似乎看过不少这种程序员的多少个级别、境界,但这篇语言很风趣,而且分类比较细化,让人觉得挺合情合理、无法反驳的。绝大...
  • dc_726
  • dc_726
  • 2017-08-31 04:58
  • 22220
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)