机器学习之神经网络

本文介绍了多层神经网络的概念,强调了其在处理非线性问题中的作用。接着,详细阐述了误差逆传播(BP)算法在训练神经网络中的应用,特别是BP神经网络的工作原理。通过实例解释了权重更新的过程,并提到了正则化以防止过拟合。最后,讨论了寻找全局最小值的策略,如模拟退火、随机梯度下降等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多层神经网络

前面说到的感知器是一种最基础的神经网络,他只有输入层和输出层,感知器只能处理线性可分问题,而对于非线性问题就需要多层神经网络。一般如下图所示,有多个层,比如左边的包含输入层、隐层和输出层,而右边的则包含了两个隐层。每层的神经元与下一神经元全互连,同层之间的神经元不会相连,输入层用于接收输入,经过隐层加工后再到输出层加工并输出。

这里写图片描述

如何训练多层网络

对于多层网络我们常用误差逆传播算法来训练,而我们最常见的BP神经网络指的是使用误差逆传播来训练的多层前馈神经网络。除此之外其他类型的神经网络也可能会用误差逆传播算法来训练。

总的来说,误差逆传播是使用梯度下降法,通过反向传播不断调整神经网络中各个权重从而使输出层的误差平方和最小。

BP神经网络

BP神经网络好的地方就是我们完全不必事先考虑怎么用数学方程来描述输入和输出之间的关系,转而考虑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

超人汪小建(seaboat)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值