Yangshengming_zZ
码龄6年
关注
提问 私信
  • 博客:38,841
    38,841
    总访问量
  • 24
    原创
  • 592,253
    排名
  • 50
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
  • 加入CSDN时间: 2018-08-11
博客简介:

Yangshengmig_zZ

查看详细资料
个人成就
  • 获得46次点赞
  • 内容获得4次评论
  • 获得191次收藏
  • 代码片获得540次分享
创作历程
  • 24篇
    2020年
成就勋章
TA的专栏
  • 机器学习
    4篇
  • 计算机视觉
    9篇
  • 数字图像处理
    11篇
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

数字图像处理第八章 图像压缩

图像压缩1 背景2 编码冗余2.1 霍夫曼码2.2 霍夫曼编码2.3 霍夫曼译码3 空间冗余4 不相关的信息5 JPEG压缩5.1 JPEG5.2 JPEG 2000图像压缩是数字图像处理中商业化最成功的一个应用方面,无论在图像传输还是图像存储中都发挥了巨大的作用,图像压缩讨论如何减少描述数字图像的数据量的问题。压缩是通过去除一个或三个基本数据冗余来达到的:1)编码冗余,当所用的码字大于最佳编码(也就是最小长度)时存在编码冗余;2)空间或/和时间冗余,也就是因为一幅图像的像素间,或是图像序列中相邻像素间的
原创
发布博客 2020.07.09 ·
2275 阅读 ·
0 点赞 ·
0 评论 ·
9 收藏

机器学习 神经网络(Neural Networks)

神经网络1 非线性假设1 非线性假设对于我们之前学习过的无论是线性回归还是逻辑回归都有一个这样的缺点,就是当特征太多时,计算的负荷会特别大。尤其是数据并不具有线性关系并且无法直观观察其具有的多项式性质,如下面:我们在之前的章节中使用过多项式回归,对回归模型中添加多项式项,但是我们仅仅对两个特征添加多项式项就会使得程序运行的效率大大下降,假如我们有100个特征,我们希望使用这100个特征去构建我们的非线性的预测模型,结果的数量级会是令人震惊的,仅仅引入二次项就会使得100个特征变成5000个特征,这对
原创
发布博客 2020.09.28 ·
734 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

机器学习 主成分分析(Principal Component Analysis)

主成分分析1 什么是主成分分析2 实现自己的PCA算法1 什么是主成分分析主成分分析法是一个非监督学习的机器学习算法,主要用于数据的降维,对于高维数据,通过降维,可以发现更便于人类理解的特征。这里我们还是从二维数据去开始理解:当我们对高维数据降低到低维数据时,我们就要把多个轴合成一个轴,如果我们相对上图中的数据进行降维使其变为一维,如果我们直接将其映射到其中一个轴上时,会丢掉太多的信息,我们的任务就是在数据降维的同时还要保留尽可能多的信息,于是我们找到了上图中红线作为我们降维之后的坐标轴,那我们是如
原创
发布博客 2020.09.20 ·
1796 阅读 ·
0 点赞 ·
0 评论 ·
11 收藏

机器学习 逻辑回归(Logistic Regression)

逻辑回归1 什么是逻辑回归2 逻辑回归的代价函数(损失函数)在解决分类问题时,如何用解决回归问题的方法来解决一个分类问题呢?那么逻辑回归会是一个很好的方法,逻辑回归将样本的特征和样本发生的概率联系起来,概率表示分类类别。1 什么是逻辑回归在线性回归中,我们得到的预测值形如:y^=f(x)\hat y=f(x)y^​=f(x)得到的预测值可以作为回归结果输出,但逻辑回归的目的是为了分类,所以我们就要改造的我们函数:p^=f(x)\hat p = f(x)p^​=f(x)这时我们得到的概率,再将概率映射到
原创
发布博客 2020.09.17 ·
407 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

机器学习 线性回归法(Linear Regression)与梯度下降法(Gradient Descent)

线性回归法与梯度下降法1 线性回归理论推导2 简单线性回归的实现3 衡量线性回归的指标4 多元线性回归和正规方程解机器学习算法分为分类算法和回归算法,这一章节学习的是线性回归法,通过学习线性回归法可以对机器学习的过程有一个很好的认知,同时梯度下降法并不是一种机器学习方法,但结合线性回归法可以很好的理解。1 线性回归理论推导当我们拿到样本数据集时,线性回归法的任务就是寻找一条直线,最大程度的拟合样本特征和样本输出标记之间的关系,回归问题的输出标记要使用一个坐标轴。这里我们从最简单的情况入手,假设样本只
原创
发布博客 2020.09.10 ·
1552 阅读 ·
8 点赞 ·
0 评论 ·
12 收藏

Python计算机视觉第九章 图像分割

图像分割1 图割(Graph Cut)1.1 从图像创建图图像分割是将一幅图像分割成有意义区域的过程。区域可以是图像的前景与背景或图像中一些单独的对象。这些区域可以利用一些诸如颜色、边界或近邻相似性等特征进行构建。本章中,我们将看到一些不同的分割技术。1 图割(Graph Cut)图论中的图(graph)是由若干节点(有时也称为顶点)和连接节点的边构成的集合。下图给出了一个示例。边可以是有向的或无向的,并且这些可能有与它们相关联的权重。图割是将一个有向图分隔成两个互不相交的集合,可以用来解决很多计
原创
发布博客 2020.09.06 ·
1555 阅读 ·
0 点赞 ·
0 评论 ·
13 收藏

Python计算机视觉编程第八章 图像内容分类

图像内容分类1 K邻近分类器(KNN)1.1 一个简单的二维示例本章介绍图像分类和图像内容分类算法。首先,我们介绍一些简单而有效的方法和目前一些性能最好的分类器,并应用他们解决两类和多分类问题,最后展示两个用于手势识别和目标识别的应用实例。1 K邻近分类器(KNN)在分类算法中,最简单且用的最多的一种方法之一就是KNN(K-Nearset Neighbor,K邻近分类法),这种算法把要分类的对象(例如一个特征向量)与训练集中已知类标记的所有对象进行对比,并由k近邻对指派到哪个类进行投票。这种方法通常分
原创
发布博客 2020.08.20 ·
591 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

Python计算机视觉编程第七章 图像搜索

图像搜索1 基于内容的图像检索2 视觉单词本章将展示如何利用文本挖掘技术对基于图像视觉内容进行图像搜索。本章阐明了提出利用视觉单词的基本思想,并解释了完整的安装细节,还在一个示例数据集上进行了测试。1 基于内容的图像检索在大型数据库上,CBIR(Content-Based Image Retrieval,基于内容的图像检索)技术用于检索在视觉上具有相似性的图像。这样返回的图像可以是颜色相似,纹理相似,图像中的物体或场景相似;总之,基本上可以是这些图像自身共有的任何信息。对于高层查询,比如寻找相似的物
原创
发布博客 2020.08.15 ·
962 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

Python计算机视觉编程第六章 图像聚类

图像聚类1 K-means聚类1.1 Scipy聚类包1.2 图像聚类1.3 在主成分上可视化图像1.4 像素聚类2 层次聚类3 谱聚类本章将介绍几种聚类方法,并展示如何利用他们对图像进行聚类,从而寻找相似的图像组。聚类可以用于识别、划分图像数据集,组织和导航。此外,我们还会对聚类后的图像进行相似性可视化。1 K-means聚类K-means是一种将输入数据划分成k个簇的简单聚类算法。K-means反复提炼初始评估的类中心,步骤如下:1)以随机或猜测的方式初始化类中心μi\mu_iμi​,i=1…k
原创
发布博客 2020.08.13 ·
1442 阅读 ·
2 点赞 ·
1 评论 ·
6 收藏

Python计算机视觉编程第五章 多视图几何

多视图几何1 外极集合本章讲解如何处理多个视图,以及如何利用多个视图的集合关系来恢复照相机位置信息和三维结构。通过在不同视点拍摄的图像,我们可以利用特征匹配来计算出三维场景点以及照相机位置。本章会介绍一些基本的方法,展示一个三维重建的完整例子;本章最后将介绍如何由立体图像进行致密深度重建。1 外极集合多视图几何是利用在不同视点所拍摄图像间的关系,来研究照相机之间或者特征之间关系的一门学科。图像的特征通常是兴趣点,本章使用的也是兴趣点特征,多视图几何中最重要的内容是双视图几何。...
原创
发布博客 2020.08.09 ·
855 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

Python计算机视觉编程第四章 照相机模型与增强现实

照相机模型与增强现实1 针孔照相机模型1.1 照相机矩阵1.2 三维点的投影1.3 照相机矩阵的分解1.4 照相机中心2 照相机标定3 以平面和标记物进行姿态估计4 增强现实4.1 PyGame和PyOpenGL4.2 从照相机矩阵到OpenGL格式4.5 在图像中放置虚拟物体本章中,我们将尝试对照相机进行建模,并有效地使用这些模型。在之前的章节里,我们已经讲述了图像到图像这件的映射和变换。为了处理三维图像和平面图像之间的映射,我们需要在映射中加入部分照相机产生图像过程的投影特性。本章中我们将会讲述如何确
原创
发布博客 2020.07.30 ·
1418 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

Python计算机视觉编程第三章 图像到图像的映射

图像到图像的映射1 单应性变换1.1 直接线性变换算法1.2 仿射变换2 图像扭曲2.1 图像中的图像2.2 图像配准3 创建全景图3.1 RANSAC3.2 稳健的单应性矩阵估计3.3 拼接图像本章讲解图像之间的变换,以及一些计算变换的实用方法。这些变换可以用于图像扭曲变形和图像配准,最后,我们将会介绍一个自动创建全景图像的例子。1 单应性变换单应性变换是将一个平面内的点映射到另一个平面内的二维投影变换。在这里,平面是指图像或者三维中的平面表示。单应性变换具有很强的实用性,比如图像配准,图像纠正和纹
原创
发布博客 2020.07.27 ·
912 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Python计算机视觉编程第二章 局部图像描述子

局部图像描述子1 Harris角点检测2 SIFT(尺度不变特征变换)2.1 兴趣点2.2 描述子2.3 检测兴趣点这一章节旨在寻找图像间的对应点和对应区域。本章将介绍用于图像匹配的两种局部描述子算法。1 Harris角点检测Harris角点检测算法(也称Harris&Stephens角点检测器)是一个极为简单的交点检测算法。该算法的主要思想是,如果像素周围显示存在多于一个方向的边,我们认为该点为兴趣点。该点就称为角点。我们把图像域中点x上的对称半正定矩阵MI=MI(x)定义为:MI=∇I∇
原创
发布博客 2020.07.23 ·
854 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Python计算机视觉编程第一章 基本的图像操作与处理

基本的图像操作与处理1 PIL:Python图像处理类库1.1 转换图像格式1.2 创建缩略图1.3 复制和粘贴图像区域1.4 调整尺寸和旋转2 Matplotlib2.1 绘制图像、点和线2.2 图像轮廓和直方图2.3 交互式标注3 Numpy3.1 图像数组表示3.2 灰度变换3.3 直方图均衡化3.4 图像的主成分分析(PCA)3.5 使用pickle模块4 Scipy4.1 图像模糊4.2 图像导数4.3 形态学:对象计数1 PIL:Python图像处理类库PIL(Python Imaging
原创
发布博客 2020.07.21 ·
1057 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

数字图像处理第十一章 表示和描述

表示和描述1 表示1.1 链码1.2 使用最小周长多边形的多边形近似1.3 标记1.4 边界片段1.5 骨骼2 边界描绘子上一章中讨论的方法将一幅图像分割成多个区域后,分割后的像素集经常以一种适合于计算机进一步处理的形式来表示和描述。基本上,表示一个区域涉及两种选择:1)我们可以根据其外部特征(其边界)来表示区域,或2)根据其内部特征(如组成该区域的像素)表示区域。当我们关注的重点是形状特征时,可选择一种外部表示;而关注的重点是内部属性如颜色和纹理时,可以选择一种内部表示。有时,需要同时使用这两种表示。无
原创
发布博客 2020.07.17 ·
1249 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

数字图像处理第十章 图像分割

图像分割1 基础知识2 点、线和边缘检测2.1 点检测2.2 线检测2.3 边缘检测3 使用霍夫变换的线检测3.1 函数hough3.2 函数houghpeaks和函数houghlines4 阈值处理4.1 基本原理4.2 基本全局阈值处理4.3 使用Otsu's方法的最佳全局阈值处理4.4 使用图像平滑改进全局阈值处理4.5 使用边缘改进全局阈值处理4.6 基于局部统计的可变阈值处理5 基于区域的分割5.1 区域生长5.2 区域分离和聚合从前一章开始,所介绍的内容就从输入和输出都是图像的图像处理方法,转
原创
发布博客 2020.07.14 ·
2143 阅读 ·
1 点赞 ·
0 评论 ·
10 收藏

数字图像处理第九章 形态学图像处理

形态学图像处理1 预备知识1.1 集合理论中的基本概念1.2 二值图像、集合及逻辑算子2 膨胀和腐蚀2.1 膨胀2.2 腐蚀3 膨胀与腐蚀的结合3.1 开操作和闭操作3.2 击中或击不中变换4 标记连通分量5 形态学重建5.1 通过重建进行开操作5.2 填充孔洞5.3 清楚边界物体6 灰度级形态学6.1 膨胀和腐蚀6.2 开操作和闭操作6.3 重建“形态学”一次通常指的是生物学的某个分支,常用来处理动物和植物的形状和结构。在这里,我们在数学形态学中也同样用这个词,将之作为提取图像分量的一种工具,这些分量在
原创
发布博客 2020.07.11 ·
1870 阅读 ·
3 点赞 ·
1 评论 ·
15 收藏

数字图像处理第七章 小波

小波1 背景2 快速小波变换2.1 使用小波工具箱的FWT2.2 不适用小波工具箱的FWT3 小波分解结构的处理3.1 使用变换分解向量c的小波工具箱函数3.2 不适用小波工具箱编辑小波分解系数3.3 用wavedispl函数显示变换系数4 图像中的小波4.1 小波的定向性和边缘检测4.2 基于小波的图像平滑及模糊4.3 渐进重构傅里叶变换是一种美丽的数学描述,但计算机实现是从时域和频域逐步离散的,傅里叶变换只显示信号或图像的频率特性,不提供任何时域信息。小波分析是最新的时频分析工具。与傅里叶变换相比,离
原创
发布博客 2020.07.06 ·
1810 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

数字图像处理第六章 彩色图像处理

彩色图像处理1 彩色模型1.1 RGB彩色模型1.2 HSI彩色模型2 彩色空间之间的转换2.1 NTSC彩色空间2.2 YCbCr彩色空间2.3 CMY和CMYK彩色空间2.4 HSI彩色空间在图像处理中,彩色的运用主要受两个因素的推动。第一,彩色是一个强有力的描绘子,它常常可简化从场景中提取和识别目标;第二,人可以辨别几千种彩色色调和亮度,但相比之下只能辨别几十种灰色色调。第二个因素在人工图像分析中特别重要。彩色图像处理可分为两个主要领域:全彩色处理和伪彩色处理。第一类中,通常要求图像用全彩色传感器获
原创
发布博客 2020.06.22 ·
3151 阅读 ·
2 点赞 ·
2 评论 ·
24 收藏

数字图像处理第五章 几何变换与图像配准

数字图像处理第五章 几何变换与图像配准几何变换与图像配准1 点变换2 仿射变换3 投影变换4 应用于图像的几何变换5 MATLAB中的图像坐标系统5 图像内插几何变换与图像配准几何变换改变了图像中像素间的空间关系,可以用于创建小场景,使之适应从某个重放分辨率到另一个分辨率的数字视频,校正由观察几何变换导致的失真,以及排列有相同场景和目标的多幅图像。这一章,我们研究图像几何变换的主要概念,以图像配准和为了定量比较对准有相同场景和目标的多幅图像的处理来结束本章。1 点变换假设(w,z)和(x,y)是两个
原创
发布博客 2020.06.17 ·
2261 阅读 ·
3 点赞 ·
0 评论 ·
18 收藏
加载更多