我的2017年文章汇总——自然语言处理篇

2017年自然语言处理文章精选
本文汇总了作者2017年关于自然语言处理(NLP)的一系列文章,涵盖词向量、信息抽取、机器学习文本分类、循环神经网络、深度学习的Attention模型和seq2seq模型,以及词2vec原理、文本聚类和智能客服系统设计等主题。
过去半以来,自然语言处理领域进化出了一件神器。此神器乃是深度神经网络的一种新模式,该模式分为:embed、encode、attend、predict四部分。本文将对这四个部分娓娓道来,并且剖析它在两个实例中的用法。 人们在谈论机器学习带来的提升时,往往只想到了机器在效率和准确率方面带给人们的提升,然而最重要的一点却是机器学习算法的通用性。如果你想写一段程序来识别社交媒体平台上的侮辱性帖子,就把问题泛化为“需要输入一段文本,预测出文本的类别ID”。这种分类与识别侮辱性帖子或是标记电子邮件类别之类的具体任务无关。如果两个问题的输入和输出类型都一致,那我们就应复用同一套模型的代码,两者的区别应该在于送入的训练数据不同,就像我们使用同一个游戏引擎玩不同的游戏。 笔者用spaCy和Keras实现了自然语言推理的可分解注意力模型。代码已经上传到github 假设你有一项强大的技术,可以预测实数稠密向量的类别标签。只要输入输出的格式相同,你就能用这项技术解决所有的问题。与此同时,你有另一项技术,可以用一个向量和一个矩阵预测出另一个向量。那么,现在你手里就握着三类问题的解决方案了,而不是两类。为什么是三类呢?因为如果第三类问题是通过矩阵和一个向量,得到一个类别标签,显然你可以组合利用前两种技术来解决。大多数NLP问题可以退化成输入一条或多条文本的机器学习问题。如果我们能将这些文本转化为向量,我们就可以复用现有的深度学习框架。接下来就是具体的做法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

超人汪小建(seaboat)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值