神经网络局限
不考虑数据形状
未考虑数据的“形状”,会破坏数据空间结构。例如,输入数据是图像时,图像通常是高长通道方向上的3维形状。但是,向全连接层输入时,需要将3维数据拉平为1维数据
参数庞大
全连接网络参数量庞大,需要降低参数量

深度受限
全连接网络层次深度受限,一般不超过七层,过深会导致梯度消失(梯度过小)或梯度爆炸(梯度过大),模型性能无法进一步提升。神经网络由输入、权重相乘得到,如果输入X
进行了归一化(
0~1)之间,会导致越乘越小(梯度消失);如果
X
不做归一化,会导致值越乘越大

最低0.47元/天 解锁文章
3448

被折叠的 条评论
为什么被折叠?



