文章目录
引言
在Matlab实现小世界网络生成及其分析中,我们已经讨论了社会网络结构属性以及小世界网络的生成算法、结构分析。
在该文中,我们提到社会网络最重要的三个属性是:
- 群聚系数
- 平均路径长度
- 节点度分布
通过小世界网络生成算法能够很好地研究群聚系数
和平均路径长度
对网络信息传递的影响。
因此,本文将从无标度网络
出发,研究网络结构度分布的特点。
社会网络分类
在发现万维网的度服从非泊松分布之前,人们通常认为复杂网络的节点度服从泊松分布 [1]。而实际上许多真实的网络结构,如学术论文的引用关联网络 [2]的节点度并不服从泊松分布,而是服从如下图所示的幂律分布 [3]。
因此,根据真实网络的节点度分布将“小世界”网络进一步划分为以下三类[4]:
1) scale-free networks:节点的度分布呈现出幂律衰减的特征;
2) broad-scale networks:节点的度分布呈现出幂律衰减的特征,但存在着一个指数截断现象;
3) single-scale networks:节点的度分布呈现出指数衰减的特征。
这里的scale-free networks
即为无标度网络
。该类网络中的大多数节点都拥有很少的边连接数,只有少数网络节点的相连节点度很大。这些连接度很大的节点在网络信息传递中扮演着主导作用 [5]。
文献 [3] 提出了节点增加
和连接偏好
两种机制来解释这类度很大的节点出现的原因。该连接偏好
机制认为:“对于网络中的已有节点 i i i,其被新增节点连接的概率 p i p_i pi 与它的节点度 k i k_i ki 呈正比例关系。”。这一概率可以用下式表示:
p i = k i ∑ j k j p_i = \frac{k_i}{\sum_j{k_j}} pi