Matlab实现无标度网络生成及其分析

本文详细介绍了Barabási-Albert无标度网络生成算法在Matlab中的实现,包括无向和有向网络的生成代码,以及节点度的统计分析方法。通过节点频率分布函数,探讨了无标度网络的特性,并提供了完整的分析流程实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


引言

Matlab实现小世界网络生成及其分析中,我们已经讨论了社会网络结构属性以及小世界网络的生成算法、结构分析。
在该文中,我们提到社会网络最重要的三个属性是:

  1. 群聚系数
  2. 平均路径长度
  3. 节点度分布

通过小世界网络生成算法能够很好地研究群聚系数平均路径长度对网络信息传递的影响。
因此,本文将从无标度网络出发,研究网络结构度分布的特点。

社会网络分类

在发现万维网的度服从非泊松分布之前,人们通常认为复杂网络的节点度服从泊松分布 [1]。而实际上许多真实的网络结构,如学术论文的引用关联网络 [2]的节点度并不服从泊松分布,而是服从如下图所示的幂律分布 [3]。
幂律分布图

因此,根据真实网络的节点度分布将“小世界”网络进一步划分为以下三类[4]:

1) scale-­free networks:节点的度分布呈现出幂律衰减的特征;
2) broad­-scale networks:节点的度分布呈现出幂律衰减的特征,但存在着一个指数截断现象;
3) single-­scale networks:节点的度分布呈现出指数衰减的特征。

这里的scale-­free networks即为无标度网络。该类网络中的大多数节点都拥有很少的边连接数,只有少数网络节点的相连节点度很大。这些连接度很大的节点在网络信息传递中扮演着主导作用 [5]。
文献 [3] 提出了节点增加连接偏好两种机制来解释这类度很大的节点出现的原因。该连接偏好机制认为:“对于网络中的已有节点 i i i,其被新增节点连接的概率 p i p_i pi 与它的节点度 k i k_i ki 呈正比例关系。”。这一概率可以用下式表示:
p i = k i ∑ j k j p_i = \frac{k_i}{\sum_j{k_j}} pi

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值