【第22期】观点:IT 行业加班,到底有没有价值?

R语言实战之高级数据管理

原创 2016年05月30日 22:03:58

高级数据管理

#数学函数
data=read.csv('sample.csv')
high=data$high[c(1:20)]
abs(high)
sqrt(high)
#不小于high的最小整数
ceiling(high)   
#不大于high 的最小整数
floor(high)
#向0方向截取的high整数部分
trunc(high)
#将high舍入为指定的小数
round(high,digits = 1)
#将high舍入为指定的有效数字位数
signif(high,digits = 6)
log(high,base = 2)
log(x)  #自然对数
log10(x)
exp(x)

#统计函数
mean(high)
median(high)
sd(high)
min()
max()
var(high)
mad(high)
sum(high)
#分位数  30%,84%
quantile(high,probs = c(.3,.84))
#滞后差分
diff(high,lag = 1)
#中心化或者标准化处理
scale(high) 


#概率函数
#d=密度函数(density)
#p=分布函数(distribution function)
#q=分位数函数(quantile function)
#r=生成随机数(随机偏差)



#字符处理函数
cc="I love you "
nchar(cc) #字符串数量
substr(cc,4,8)
grep(o,cc)
sub('\\s','.',cc)  #替换
strsplit()  #python split
paste()      #python zip
toupper()
tolower()



#其他函数
seq(1,20,by=0.5)    #生成序列
rep(1:3,4)   #重复
cut()
pretty()
cat()



#控制流
for (i in 1:10) print('i')
i=10
while(i>0){
  print('heloo');
  i=i-1
}
for (i in 1:2)
  switch(i,
         1='liming',
         2 ='weiyudang')

weiyudang=function(x){return(x**2)}

#装置
t(data)
#整合数据,使用一个或者多个by变量和一个预先定义好的函数来折叠(collapse)数据

#reshape
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

R语言实战笔记--第四&五章 数据管理

R语言实战笔记–第四&五章 数据管理标签(空格分隔): R语言  第四、第五章都是说的数据管理,合并在一起做个总结,在个人看来,数据管理是一件非常繁琐的事情,但是,每个统计的前提都是一个合适的数据样本...

SAP MDM 主数据管理

 《SAP MDM 主数据管理》 基本信息 作者: 和轶东 张怡 曹乃刚 出版社:清华大学出版社 ISBN:9787302317876 上架时间:2013-4-7</d

R语言_基本数据管理

r语言 数据管理

产品技术和管理

为啥纯粹为消费者传递体验的活动可以价格不菲,几为暴利?——谈客户体验作为客户价值提升之源 不论产品还是服务,如果能够为消费者传递有益的体验,其价值就可以在一般的产品

Java Persistence with Hibernate中文版Hibernate实战第2版出版

Java Persistence with Hibernate中文版Hibernate实战第2版出版 [img]http://lh3.google.com/iamin83567/R-oc--J9cDI/AAAAAAAABHo/qu0PC-syvKc/JavaPersistenceWithHibernateCoverBig.jpg?imgmax=512[/img] 图灵出版社官方Hibernate实战(第2版)链接为: [url]http://www.turingbook.com/Books/ShowBook.aspx?BookID=260[/url] 书  名: Hiberna
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)