# Legendre's three-square theorem

In mathematicsLegendre's three-square theorem states that a natural number can be represented as the sum of three squares of integers

$n = x^2 + y^2 + z^2$

if and only if n is not of the form $n = 4^a(8b + 7)$ for integers a and b.

The first numbers that cannot be expressed as the sum of three squares (i.e. numbers that can be expressed as $n = 4^a(8b + 7)$) are

7, 15, 23, 28, 31, 39, 47, 55, 60, 63, 71 ... (sequence A004215 in OEIS).

[hide

## History

Pierre de Fermat gave a criterion for numbers of the form 3a+1 to be a sum of 3 squares essentially equivalent to Legendre's theorem, but did not provide a proof. N. Beguelin noticed in 1774[1] that every positive integer which is neither of the form 8n + 7, nor of the form 4n, is the sum of three squares, but did not provide a satisfactory proof.[2] In 1796 Gauss proved his Eureka theorem that every positive integer n is the sum of 3 triangular numbers; this is trivially equivalent to the fact that 8n+3 is a sum of 3 squares. In 1797 or 1798 A.-M. Legendre obtains the first proof of his 3 square theorem.[3] In 1813, A. L. Cauchynotes[4] that Legendre's theorem is equivalent to the statement in the introduction above. Previously, in 1801, C. F. Gauss had obtained a more general result,[5] containing Legendre theorem of 1797-8 as a corollary. In particular, Gauss counts the number of solutions of the expression of an integer as a sum of three squares, and this is a generalisation of yet another result of Legendre,[6] whose proof is incomplete. This last fact appears to be the reason for later incorrect claims according to which Legendre's proof of the three-square theorem was defective and had to be completed by Gauss.[7]

With Lagrange's four-square theorem and the two-square theorem of Girard, Fermat and Euler, the Waring's problem for k = 2 is entirely solved.

## Proofs

The "only if" of the theorem is simply because modulo 8, every square is congruent to 0, 1 or 4. There are several proofs of the converse. One of them is due to J. P. G. L. Dirichlet in 1850, and has become classical.[8] It requires three main lemmas:

## Relationship to the four-square theorem

This theorem can be used to prove Lagrange's four-square theorem, which states that all natural numbers can be written as a sum of four squares. Gauss[9] pointed out that the four squares theorem follows easily from the fact that any positive integer that is 1 or 2 mod 4 is a sum of 3 squares, because any positive integer not divisible by 4 can be reduced to this form by subtracting 0 or 1 from it. However, proving the three-square theorem is considerably more difficult than a direct proof of the four-square theorem that does not use the three-square theorem.

• 本文已收录于以下专栏：

## [LeetCode] 279. Perfect Squares 解题报告

Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, ...
• a921122
• 2017年02月19日 03:04
• 188

## UVa 11342 - Three-square

• mobius_strip
• 2015年12月17日 15:33
• 416

## Fermat's little theorem(费马小定理)

If p is prime, then for every a >= 1 and a 如果p是质数，那么对于所有的 大于1，小于p的 a，都有 a 的 p-1 次方 除以 p 的余数为1。 这个定理...
• topasstem8
• 2013年09月24日 08:47
• 2129

## 棋盘覆盖和Hall's marriage theorem

• magicnumber
• 2015年02月05日 21:26
• 1562

## zoj 1738 - Lagrange's Four-Square Theorem

• mobius_strip
• 2014年10月01日 18:03
• 1073

## POJ 3641 Pseudoprime numbers 【快速幂】

Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 878...
• lututu123
• 2016年07月28日 08:47
• 141

## Mercer's Theorem的证明

[由于还没有完全学会PHP和HTML，暂时先用新浪博客写一部分文档，之后等自己建出来个人网站后，在将博客移动至个人网站。今天算是人生以来第一个博客吧！] 在学习Kernel和RKHS的时...
• zlx562998710
• 2016年02月21日 22:48
• 952

## AtCoder Regular Contest 076 F - Exhausted （Hall's marriage theorem 或 贪心）

• kalilili
• 2017年06月25日 00:17
• 380

## poj 3511 Fermat's Christmas Theorem 筛素数

//poj 3511 //sep9 #include using namespace std; const int max_prime_num = 1000010; const int max_n ...
• sepNINE
• 2016年12月11日 18:15
• 186

## CodeForces 199A Hexadecimal's theorem

• luminous11
• 2015年02月27日 20:15
• 378

举报原因： 您举报文章：Legendre's three-square theorem 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)