题目大意
现有N个未知数X1..N,已知这N个未知数之和为M。
现有n1个不等式,第i个不等式为Xi<=Fi。
还有n2个不等式,第i个不等式为Xi+n1>=Gi。
求方程的正整数解个数,结果模P。
若
P=p1c1∗p2c2∗...∗ptopctop
则最大的
pici<=105
N,M<=10^9,n1,n2<=8。
隔板问题
我们可以将模型转换,即有N个箱子,将M个球分到N个箱子里,并要求满足一些约束,且每个箱子至少有一个球。可知,在没有约束时,答案为
CN−1M−1
对于第二种约束Xi+n1>=Gi,我们可以在对应箱子放Gi-1个球,则无论如何分配,一定能满足这个约束。
因此先令M=M-
∑n2i=1Gi−1
如何对付第一种约束?
容斥原理
我们发现,我们可以使用容斥原理来解决。
不满足第i个约束,即不满足Xi<=Fi,那么就是Xi>Fi,我们可以在对应箱子放Fi个球,则无论如何分配一定不满足这个约束。即可解决此题。
由于N,M即大,但可以利用P的最大
pc
不超过
105
来分解质因数并快速阶乘,做组合数模。推荐一道经典的组合数模题reward,我的blog有题解。
参考程序
#include<cstdio>
#include<iostream>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
typedef long long ll;
ll f[10],a[20],b[20],c[20],d[20],e[20],pri[32000+10],fac[100000+10];
bool bz[32000+10];
ll i,j,k,l,t,n,m,n1,n2,ca,p,pp,num,top,xx,yy,cnt;
ll quicksortmi(ll x,ll y,ll p){
if (!y) return 1;
if (y==1) return x%p;
ll t=quicksortmi(x,y/2,p);
t=t*t%p;
if (y%2) t=t*(x%p)%p;
return t;
}
void gcd(ll a,ll b){
if (!b){
xx=1;
yy=0;
}
else{
gcd(b,a%b);
swap(xx,yy);
yy-=xx*(a/b);
}
}
ll getny(ll x,ll y){
gcd(x,y);
xx=(xx%y+y)%y;
return xx;
}
ll calcfac(ll n,ll p,ll pp){
if (n<pp) return fac[n];
ll t=quicksortmi(fac[p-1],n/p,p);
t=t*fac[n%p]%p;
cnt+=n/pp;
t=t*calcfac(n/pp,p,pp)%p;
return t;
}
ll calc(ll x,ll y,ll p,ll pp){
ll i;
fac[0]=1;
fo(i,1,p-1)
if (i%pp==0) fac[i]=fac[i-1];
else fac[i]=fac[i-1]*i%p;
cnt=0;
ll A=calcfac(y,p,pp);
ll tot=cnt;
cnt=0;
ll B=calcfac(x,p,pp);
B=B*calcfac(y-x,p,pp)%p;
B=getny(B,p);
return A*B%p*quicksortmi(pp,tot-cnt,p)%p;
}
ll comb(ll x,ll y,ll p){
if (x>y) return 0;
fo(i,1,top) a[i]=calc(x,y,d[i],e[i]);
fo(i,1,top) b[i]=getny(c[i],d[i]);
ll t=0;
fo(i,1,top) t=(t+a[i]*b[i]%p*c[i]%p)%p;
return t;
}
void dfs(ll x,ll m,ll cnt){
if (x==n1+1){
ll t=comb(n-1,m-1,p);
if (cnt%2) num=((num-t)%p+p)%p;
else num=(num+t)%p;
return;
}
dfs(x+1,m,cnt);
if (m-f[x]) dfs(x+1,m-f[x],cnt+1);
}
int main(){
fo(i,2,32000){
if (!bz[i]) pri[++k]=i;
fo(j,1,k){
if (pri[j]*i>32000) break;
bz[i*pri[j]]=1;
if (i%pri[j]==0) break;
}
}
scanf("%lld%lld",&ca,&p);
pp=p;
fo(i,1,k){
if (pp%pri[i]==0){
d[++top]=1;e[top]=pri[i];
while (pp%pri[i]==0){
d[top]*=pri[i];
pp/=pri[i];
}
}
}
fo(i,1,top) c[i]=p/d[i];
while (ca--){
scanf("%lld%lld%lld%lld",&n,&n1,&n2,&m);
fo(i,1,n1) scanf("%lld",&f[i]);
fo(i,1,n2){
scanf("%lld",&k);
if (k) m-=k-1;
}
num=0;
dfs(1,m,0);
printf("%lld\n",num);
}
}