【组合数取模】【SDOI2013】【BZOJ 3129】【JZOJ 3214】方程

Description

给定方程
X 1 + X 2 + … + X n = m X_1+X_2+…+X_n=m X1+X2++Xn=m
我们对第 1 … n 1 1\ldots n_1 1n1个变量 进行一些限制 :
X 1 ≤ A 1 X_1≤A_1 X1A1
X 2 ≤ A 2 X_2≤A_2 X2A2
… …
X n 1 ≤ A n 1 X_{n1}≤A_{n1} Xn1An1
我们对第 n 1 + 1 , n 1 + 2 … n 1 + n 2 n_1+1,n_1+2\ldots n_1+n_2 n1+1,n1+2n1+n2个变量进行一些限制 :
X n 1 + 1 ≥ A n 1 + 1 X_{n_1+1}≥A_{n_1+1} Xn1+1An1+1
X n 1 + 2 ≥ A n 1 + 2 X_{n_1+2}≥A_{n_1+2} Xn1+2An1+2
… …
X n 1 + n 2 ≥ A n 1 + n 2 X_{n_1+n_2}≥A_{n_1+n_2} Xn1+n2An1+n2
求:在满足这些限制的前提下, 该方程正整数解的个数。
答案可能很大,请输出对 p取模 后的答案,也即答案除以p的余数。

Analysis

很好的一道题,综合了几个知识点,可以帮助复习算法(对于我这种蒟蒻只能学习了)。
有时要抽象题意,可是有时却要形象题意,这样的好处是更直观,例如此题,形象化:
m m m个球, n n n个盒子,要把 m m m个球放入 n n n个盒子内,每个盒子至少放一个球,有些盒子还有必须放大于或小于某个球的限制,问方案数。
让我们一步一步来,从简单到复杂(不要说我生物学得太好)。
不考虑任何约束,易用隔板法证明,方案数为 C m − 1 n − 1 C_{m-1}^{n-1} Cm1n1
对于那些 ≥ A i \geq A_i Ai的,我们可以让 m = m − ( A i − 1 ) m=m-(A_i-1) m=m(Ai1),这个显然。
对于那些 ≤ A i \leq A_i Ai的,很难搞,于是正难则反,反过来搞,变成 ≥ \geq ,发现要用容斥减重。
那么我们现在答案是一堆 C C C的和。
是不是觉得能A了,激动了?
错!组合数涉及除法,模数不一定是素数
但是,我们有
中国剩余定理!
中国剩余定理,又称孙子定理,是中国古人发现的神奇方法,被某人传到欧洲,因而得名。
这里我们的答案就是定理里面的 x x x,将模数 p p p分解成 m 1 x 1 ∗ m 2 x 2 ⋯ m k x k m_1^{x_1}*m_2^{x_2}\cdots m_k^{x_k} m1x1m2x2mkxk,对于每个 m i m_i mi做一遍,求出对应的 a i a_i ai,再合并。
所以,现在问题变成了如何计算 C m n m o d   m o C_m^n mod\ mo Cmnmod mo
可以把 C m n C_m^n Cmn化成 a ∗ m o b a*mo^b amob的形式,再 m o d   m o mod\ mo mod mo
为什么不可以直接模呢,因为若分母里有 m o mo mo的倍数,那么互质条件不成立,逆元也就不能求了。
所以,我们的问题又化为更小的一个子问题,求 n ! n! n!里有多少个 m o mo mo的及除了 m o mo mo外的积。
直接暴力肯定会TLE,我们要找到快速方法。
f a c [ i ] fac[i] fac[i]表示前 i i i个数不包括 m o mo mo以外的乘积。这个只需要预处理到最大的 m o b mo^b mob就好了。
举个例子, n = 13 , m o = 3 n=13,mo=3 n=13,mo=3,当前的ans为 d f s ( n ) dfs(n) dfs(n)
n ! = 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 ∗ 6 ∗ 7 ∗ 8 ∗ 9 ∗ 10 ∗ 11 ∗ 12 ∗ 13 n!=1*2*3*4*5*6*7*8*9*10*11*12*13 n!=12345678910111213
= 1 ∗ 2 ∗ 4 ∗ 5 ∗ 7 ∗ 8 ∗ 10 ∗ 11 ∗ d f s ( n / m o ) ∗ f a c [ n   m o d   m o ] =1*2*4*5*7*8*10*11*dfs(n/mo)*fac[n\ mod\ mo] =1245781011dfs(n/mo)fac[n mod mo]
≡ ( 1 ∗ 2 ) 4 ∗ d f s ( n / m o ) ∗ f a c [ n   m o d   m o ] ≡(1*2)^{4}*dfs(n/mo)*fac[n\ mod\ mo] (12)4dfs(n/mo)fac[n mod mo]
递归处理即可。

Code

#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef long long ll;
int n1,n2,tot,n,m,num,p,a[20];
ll fac[10210];
struct lyd
{
	int x,y,z;
}c[10];
ll qmi(int x,int n,int mo)
{
	ll t=1;
	for(;n;n>>=1)
	{
		if(n&1) t=t*x%mo;
		x=x*x%mo;
	}
	return t;
}
void exgcd(int a,int b,ll &x,ll &y)
{
	if(!b)
	{
		x=1,y=0;
		return;
	}
	ll x1,y1;
	exgcd(b,a%b,x1,y1);
	x=y1,y=x1-a/b*y1;
}
ll ny(int n,int mo)
{
	ll x,y;
	exgcd(n,mo,x,y);
	return (x%mo+mo)%mo;
}
void pri(int n)
{
	num=0;
	for(int i=2;i*i<=n;i++)
		if(n%i==0)
		{
			c[++num].x=i,c[num].y=0;
			while(n%i==0) n/=i,c[num].y++;
		}
	if(n!=1) c[++num].x=n,c[num].y=1;
}
ll calcfac(int n,int k,int hjy)
{
	if(n<c[k].x) return fac[n];
	int mo=c[k].z;
	tot+=hjy*(n/c[k].x);
	return calcfac(n/c[k].x,k,hjy)*qmi(fac[mo],n/mo,mo)%mo*fac[n%mo]%mo;
}
ll CC(int m,int n,int k)
{
	tot=0;
	ll t=1;
	int mo=c[k].z;
	t=calcfac(m,k,1)*ny(calcfac(n,k,-1)*calcfac(m-n,k,-1)%mo,mo)%mo;
	t=t*qmi(c[k].x,tot,mo)%mo;
	return t;
}
ll C(int m,int n)
{
	if(m<n) return 0;
	pri(p);
	fo(i,1,num) c[i].z=qmi(c[i].x,c[i].y,p+1);
	ll ans=0;
	fo(i,1,num)
	{
		fac[0]=1;
		fo(j,1,c[i].z)
		{
			fac[j]=fac[j-1];
			if(j%c[i].x!=0) fac[j]=fac[j]*j%c[i].z;
		}
		(ans+=(p/c[i].z)*ny(p/c[i].z,c[i].z)*CC(m,n,i))%=p;
	}
	return ans;
}
int main()
{
	int _;
	ll m1;
	scanf("%d %d",&_,&p);
	while(_--)
	{
		scanf("%d %d %d %d",&n,&n1,&n2,&m1);
		fo(i,1,n1+n2) scanf("%d",&a[i]);
		fo(i,n1+1,n1+n2) m1-=a[i]-1;
		ll ans=C(m1-1,n-1);
		fo(i,1,(1<<n1)-1)
		{
			ll m=m1,t=0;
			fo(j,0,n1-1)
				if(i&(1<<j)) t++,m-=a[j+1];
			t=(t&1)?(-1):(1);
			ans=((ans+t*C(m-1,n-1)%p)%p+p)%p;
		}
		printf("%lld\n",ans);
	}
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值