python中的三个读read(),readline()和readlines()

我们谈到“文本处理”时,我们通常是指处理的内容。Python 将文本文件的内容读入可以操作的字符串变量非常容易。文件对象提供了三个“读”方法: .read()、.readline() 和 .readlines()。每种方法可以接受一个变量以限制每次读取的数据量,但它们通常不使用变量。 .read() 每次读取整个文件,它通常用于将文件内容放到一个字符串变量中。然而 .read() 生成文件内容最直接的字符串表示,但对于连续的面向行的处理,它却是不必要的,并且如果文件大于可用内存,则不可能实现这种处理。

.readline() 和 .readlines() 非常相似。它们都在类似于以下的结构中使用:

Python .readlines() 示例

        fh = open( 'c:\\autoexec.bat')         for line in fh.readlines():                     print   line.readline() 和 .readlines()之间的差异是后者一次读取整个文件,象 .read()一样。.readlines()自动将文件内容分析成一个行的列表,该列表可以由 Python 的 for... in ... 结构进行处理。另一方面,.readline()每次只读取一行,通常比 .readlines()慢得多。仅当没有足够内存可以一次读取整个文件时,才应该使用.readline()。  

写:

writeline()是输出后换行,下次写会在下一行写。write()是输出后光标在行末不会换行,下次写会接着这行写



通过readline输出,对于比较大的文件,这种占用内存比较小。
#coding:utf-8

f = open('poem.txt','r')
result = list()
for line in open('poem.txt'):
    line = f.readline()
    print line
    result.append(line)
print result
f.close()                
open('result-readline.txt', 'w').write('%s' % '\n'.join(result))



#coding:utf-8
'''cdays-4-exercise-6.py 文件基本操作
    @note: 文件读取写入, 列表排序, 字符串操作
    @see: 字符串各方法可参考hekp(str)或Python在线文档http://docs.python.org/lib/string-methods.html
'''

f = open('cdays-4-test.txt', 'r')                   #以读方式打开文件
result = list()
for line in f.readlines():                          #依次读取每行
    line = line.strip()                             #去掉每行头尾空白
    if not len(line) or line.startswith('#'):       #判断是否是空行或注释行
        continue                                    #是的话,跳过不处理
    result.append(line)                             #保存
result.sort()                                       #排序结果
print result
open('cdays-4-result.txt', 'w').write('%s' % '\n'.join(result)) #保存入结果文件



<think>嗯,用户问的是Pythonreadreadlinereadlines的区别。首先,我需要回忆这三个方法的具体用法区别。记得它们都是用来取文件内容的,但具体行为不同。 首先,read()方法应该是取整个文件内容,返回一个字符串。如果指定了size参数,就取指定大小的数据。对吧?比如f.read(10)会10个字节。 然后是readline(),这个应该是每次取一行,保留行尾的换行符。如果文件很大,逐行取可以节省内存。不过如果反复调用的话,会不会自动移动到下一行?是的,因为文件对象会记录当前位置。 接下来是readlines(),它会把所有行到一个列表里,每个元素是一行内容,包括换行符。可能需要注意内存问题,因为大文件的话列表会很大。不过现在用户可能更关心基本区别。 用户可能需要实际例子来理解它们的区别。比如用同一个文件分别展示三个方法的输出结果。还要提醒他们文件指针的位置变化,比如调用read()后,再调用readline()会不会返回空,因为已经到文件末尾了。 可能用户在处理日志文件、配置文件时,需要逐行处理,这时候用readline或者循环文件对象更高效。而readlines适合需要所有行的情况,比如处理每一行后存储起来。 还要注意,在Python中,通常推荐直接用for循环迭代文件对象,这样更高效,因为不会一次性加载所有内容到内存。这点可能也值得提到,作为最佳实践。 有没有特殊情况需要注意?比如文件没有换行符时,readline的行为?或者不同操作系统下的换行符处理?不过用户的问题可能更基础,暂时不需要深入这些细节。 总结的话,应该分点说明每个方法的功能、返回值类型、适用场景,以及注意事项。结构要清晰,让用户容易理解。</think>在Python中,`read`、`readline``readlines`是文件取的三种常用方法,它们的核心区别在于**取方式****返回值类型**。以下是逐步说明: --- ### 1. **`read([size])`** - **功能** 一次性取文件的**全部内容**(或指定字节数),返回**字符串类型**。 - **参数** `size`(可选):指定取的字节数。若省略或为负数,则取整个文件。 - **示例** ```python with open("test.txt", "r") as f: content = f.read() # 取整个文件 partial = f.read(10) # 取前10个字符(若未到文件末尾) ``` - **适用场景** 适合小文件或需要一次性处理全部内容的场景。 - **注意事项** 大文件可能占用过高内存。 --- ### 2. **`readline([size])`** - **功能** 逐行取文件内容,返回**字符串类型**(包含换行符`\n`)。 - **参数** `size`(可选):限制单行取的字节数。若省略,则取整行。 - **示例** ```python with open("test.txt", "r") as f: line1 = f.readline() # 取第一行(包含换行符) line2 = f.readline() # 取第二行 ``` - **适用场景** 逐行处理大文件(如日志分析),节省内存。 - **注意事项** 需手动循环取所有行,或结合`while`使用。 --- ### 3. **`readlines([hint])`** - **功能** 取文件的**所有行**,返回**列表类型**,每行内容为列表元素(含换行符)。 - **参数** `hint`(可选):限制取的总字节数。若省略,取全部。 - **示例** ```python with open("test.txt", "r") as f: lines = f.readlines() # 返回列表,如["line1\n", "line2\n"] ``` - **适用场景** 需要按行操作且文件不大的情况。 - **注意事项** 大文件可能导致内存溢出。 --- ### 对比总结 | 方法 | 返回值类型 | 内存占用 | 适用场景 | |-------------|------------|----------|------------------| | `read()` | 字符串 | 高 | 小文件整体取 | | `readline()`| 字符串 | 低 | 逐行处理大文件 | | `readlines()`| 列表 | 高 | 需要按行操作小文件 | --- ### 扩展建议 - **更高效的逐行取方式** 直接遍历文件对象(无需`readlines`): ```python with open("test.txt", "r") as f: for line in f: # 逐行迭代,内存友好 print(line.strip()) ``` - **文件指针位置** 每次调用这些方法后,文件指针会移动到已取内容的末尾,影响后续操作。可通过`f.seek(0)`重置指针位置。 希望这个对比能帮助您合理选择文件取方法!
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值