最长递增子序列 O(NlogN)算法

转载 2015年07月11日 09:14:07
今天回顾WOJ1398,发现了这个当时没有理解透彻的算法。
看了好久好久,现在终于想明白了。
试着把它写下来,让自己更明白。

最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。
排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。

假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了

首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1

然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1

接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2

再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2

继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。

第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3

第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了

第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。

最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。

于是我们知道了LIS的长度为5。

!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。

然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!

代码如下:

//在非递减序列 arr[s..e](闭区间)上二分查找第一个大于等于key的位置,如果都小于key,就返回e+1
int upper_bound(int arr[], int s, int e, int key)
{
    int mid;
    if (arr[e] <= key)
        return e + 1;
    while (s < e)
    {
        mid = s + (e - s) / 2;
        if (arr[mid] <= key)
            s = mid + 1;
        else
            e = mid;
    }
    return s;
}

int LIS(int d[], int n)
{
    int i = 0, len = 1, *end = (int *)alloca(sizeof(int) * (n + 1));
    end[1] = d[0]; //初始化:长度为1的LIS末尾为d[0]
    for (i = 1; i < n; i++)
    {
        int pos = upper_bound(end, 1, len, d[i]); //找到插入位置
        end[pos] = d[i];
        if (len < pos) //按需要更新LIS长度
            len = pos;
    }
    return len;
}


最长递增子序列O(NlogN)算法

转载出处:https://www.felix021.com/blog/read.php?1587最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。 ...

最长递增子序列(LIS)的O(NlogN)打印算法

题目: 求一个一维数组arr[n]中的最长递增子序列的长度,如在序列1,5,8,3,6,7中,最长递增子序列长度为4 (即1,3,6,7)。 方法一:一般的DP方法(O(N^2)) 像LC...

最长递增子序列 O(NlogN)算法

http://www.felix021.com/blog/read.php?1587 今天回顾WOJ1398,发现了这个当时没有理解透彻的算法。 看了好久好久,现在终于想明白了。 试着把...
  • youqika
  • youqika
  • 2013年12月05日 10:10
  • 436

最长递增子序列 O(NlogN)算法

今天学习了求最长递增子序列这个题的O(NlogN)的解法。记录一下大概的思路,要不然过一段时间又该忘了。 基本思路就是维护一个数组,假设为DP。DP[i]所记录的是,在原始数组的所有长度为i+1的单调...

最长递增子序列 O(NlogN)算法

原博客地址:http://www.felix021.com/blog/tb.php?t=1587&extra=f46f2 今天回顾WOJ1398,发现了这个当时没有理解透彻的算法。 看了好久好久,现在...

最长递增子序列 O(NlogN)算法,mark数组。ZOJ Problem Set - 2319— Beautiful People

题意:题目让求n对数中,最多有多少对满足题意的数字,并输出他们的编号(如果一对数的两个数字都分别大于另一对数的两个数,那么这两个就是符合题意的,求最多能有多少对(他们中的任意两个都要符合题意)) 思路...

最长递增子序列 O(NlogN)算法

最长递增子序列 O(NlogN)算法今天回顾WOJ1398,发现了这个当时没有理解透彻的算法。 看了好久好久,现在终于想明白了。 试着把它写下来,让自己更明白。最长递增子序列,Longest In...

leetcode 300.Longest Increasing Subsequence(最长递增子序列) O(nlogn)算法

leetcode 300.Longest Increasing Subsequence(最长递增子序列) ,网上多是动态规划,复杂度为O(n^2)算法;本文设计一个O(nlogn)算法,即维护最小的最...

最长递增子序列 O(NlogN)算法

今天回顾WOJ1398,发现了这个当时没有理解透彻的算法。 看了好久好久,现在终于想明白了。 试着把它写下来,让自己更明白。 最长递增子序列,Longest Increasing Sub...

最长递增子序列的O(NlogN)算法

假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。 下面一步一步试着找出它。 我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:最长递增子序列 O(NlogN)算法
举报原因:
原因补充:

(最多只允许输入30个字)