最长递增子序列o(nlogn)

本文详细介绍了如何使用动态规划在O(nlogn)的时间复杂度内解决最长递增子序列问题。通过维护一个有序序列来优化查找过程,大大提升了算法效率。
摘要由CSDN通过智能技术生成
     #include <stdio.h>  
    #include <stdlib.h>  
    #include <string.h>  
      
    #define N 9 //数组元素个数  
    int array[N] = {2, 1, 6, 3, 5, 4, 8, 7, 9}; //原数组  
    int B[N]; //在动态规划中使用的数组,用于记录中间结果,其含义三言两语说不清,请参见博文的解释  
    int len; //用于标示B数组中的元素个数  
      
    int LIS(int *array, int n); //计算最长递增子序列的长度,计算B数组的元素,array[]循环完一遍后,B的长度len即为所求  
    int BiSearch(int *b, int len, int w); //做了修改的二分搜索算法  
      
    int main()  
    {  
        printf("LIS: %d\n", LIS(array, N));  
      
        int i;  
        for(i=0; i<len; ++i)  
        {  
            printf("B[%d]=%d\n", i, B[i]);  
        }  
      
        return 0;  
    }  
      
    int LIS(int *array, int n)  
    {  
        len = 1;  
        B[0] = array[0];  
        int i, pos = 0;  
      
        for(i=1; i<n; ++i)  
        {  
            if(array[i] > B[len-1]) //如果大于B中最大的元素,则直接插入到B数组末尾  
            {  
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值