#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define N 9 //数组元素个数
int array[N] = {2, 1, 6, 3, 5, 4, 8, 7, 9}; //原数组
int B[N]; //在动态规划中使用的数组,用于记录中间结果,其含义三言两语说不清,请参见博文的解释
int len; //用于标示B数组中的元素个数
int LIS(int *array, int n); //计算最长递增子序列的长度,计算B数组的元素,array[]循环完一遍后,B的长度len即为所求
int BiSearch(int *b, int len, int w); //做了修改的二分搜索算法
int main()
{
printf("LIS: %d\n", LIS(array, N));
int i;
for(i=0; i<len; ++i)
{
printf("B[%d]=%d\n", i, B[i]);
}
return 0;
}
int LIS(int *array, int n)
{
len = 1;
B[0] = array[0];
int i, pos = 0;
for(i=1; i<n; ++i)
{
if(array[i] > B[len-1]) //如果大于B中最大的元素,则直接插入到B数组末尾
{
最长递增子序列o(nlogn)
本文详细介绍了如何使用动态规划在O(nlogn)的时间复杂度内解决最长递增子序列问题。通过维护一个有序序列来优化查找过程,大大提升了算法效率。
摘要由CSDN通过智能技术生成