Baby Step Giant Step 解 a^x = b (mod n) n为素数
这类问题用Hash表查找,速度明显比二分数组的方式快
Hash表inset函数加入判重会更快一些
以下内容节选自:AekdyCoin的空间
【普通Baby Step Giant Step】
【问题模型】
求解
A^x = B (mod C) 中 0 <= x < C 的解,C 为素数
【思路】
我们可以做一个等价
x = i * m + j ( 0 <= i < m, 0 <=j < m) m = Ceil ( sqrt( C) )
而这么分解的目的无非是为了转化为:
(A^i)^m * A^j = B ( mod C)
之后做少许暴力的工作就可以解决问题:
(1) for i = 0 -> m, 插入Hash (i, A^i mod C)
(2) 枚举 i ,对于每一个枚举到的i,令 AA = (A^m)^i mod C
我们有
AA * A^j = B (mod C)
显然AA,B,C均已知,而由于C为素数,那么(AA,C)无条件为1
于是对于这个模方程解的个数唯一(可以利用扩展欧几里得或 欧拉定理来求解)
那么对于得到的唯一解X,在Hash表中寻找,如果找到,则返回 i * m + j
注意:由于i从小到大的枚举,而Hash表中存在的j必然是对于某个剩余系内的元素X 是最小的(就是指标)
所以显然此时就可以得到最小解
如果需要得到 x > 0的解,那么只需要在上面的步骤中判断 当 i * m + j > 0 的时候才返回
代码参考自:http://www.cnblogs.com/kuangbin/archive/2013/08/24/3278852.html
另一种实现:http://blog.csdn.net/acm_cxlove/article/details/7831793
#include <cstdio>
#include <cstring>
#include <cmath>
#define i64 long long
//Baby Step Giant Step 离散对数
// a^x = b (mod n) n为素数,a,b < n
// 求解上式 0<=x < n的解
const int MOD=65535;
int hash[MOD],head[MOD],next[MOD],id[MOD],e;
void insert (int x,int y)
{
int k = x%MOD;
for (int i=head[k] ; i!=-1 ; i=next[i])
if (hash[i] == x)
return ;
hash[e]=x;
id[e]=y;
next[e]=head[k];
head[k]=e++;
}
int find (int x)
{
int k = x%MOD;
for (int i=head[k] ; i!=-1 ; i=next[i])
if (hash[i] == x)
return id[i];
return -1;
}
int BSGS (int a,int b,int n)
{
memset(head,-1,sizeof(head));
e=1;
if (b==1) return 0;
int m = sqrt(1.0*n), j;
i64 x=1,p=1,i;
for (i=0;i<m;i++, p = p*a%n ) //p对应a^i
insert(p*b%n,i);
for (i=m; ;i+=m)
{
if ( (j = find(x = x*p%n)) != -1 ) return i-j;
if (i>n) break;
}
return -1;
}
int main ()
{
#ifdef ONLINE_JUDGE
#else
freopen("read.txt","r",stdin);
#endif
int p,b,n;
while (~scanf("%d%d%d",&p,&b,&n))
{
int ans=BSGS(b,n,p);
if (ans==-1)
printf("no solution\n");
else
printf("%d\n",ans);
}
return 0;
}