Poj 2417 Discrete Logging (Baby Step Giant Step 解 a^x = b (mod n) n为素数)

Baby Step Giant Step 解 a^x = b (mod n) n为素数

这类问题用Hash表查找,速度明显比二分数组的方式快

Hash表inset函数加入判重会更快一些

以下内容节选自:AekdyCoin的空间

【普通Baby Step Giant Step】

【问题模型】
求解
A^x = B (mod C) 中 0 <= x < C 的解,C 为素数

【思路】
我们可以做一个等价
x = i * m + j  ( 0 <= i < m, 0 <=j < m) m = Ceil ( sqrt( C) )
而这么分解的目的无非是为了转化为:
(A^i)^m * A^j = B ( mod C)

之后做少许暴力的工作就可以解决问题:
(1) for i = 0 -> m, 插入Hash (i, A^i mod C)
(2) 枚举 i ,对于每一个枚举到的i,令  AA = (A^m)^i mod C
我们有
AA * A^j = B (mod C)
显然AA,B,C均已知,而由于C为素数,那么(AA,C)无条件为1
于是对于这个模方程解的个数唯一(可以利用扩展欧几里得或 欧拉定理来求解)
那么对于得到的唯一解X,在Hash表中寻找,如果找到,则返回 i * m + j 
注意:由于i从小到大的枚举,而Hash表中存在的j必然是对于某个剩余系内的元素X 是最小的(就是指标)
所以显然此时就可以得到最小解


如果需要得到 x > 0的解,那么只需要在上面的步骤中判断 当 i * m + j > 0 的时候才返回

代码参考自:http://www.cnblogs.com/kuangbin/archive/2013/08/24/3278852.html

另一种实现:http://blog.csdn.net/acm_cxlove/article/details/7831793

#include <cstdio>
#include <cstring>
#include <cmath>

#define i64 long long


//Baby Step Giant Step 离散对数
// a^x = b (mod n) n为素数,a,b < n
// 求解上式 0<=x < n的解

const int MOD=65535;
int hash[MOD],head[MOD],next[MOD],id[MOD],e;

void insert (int x,int y)
{
    int k = x%MOD;
    for (int i=head[k] ; i!=-1 ; i=next[i])
        if (hash[i] == x)
			return ;
    hash[e]=x;
    id[e]=y;
    next[e]=head[k];
    head[k]=e++;
}

int find (int x)
{
    int k = x%MOD;
    for (int i=head[k] ; i!=-1 ; i=next[i])
        if (hash[i] == x)
            return id[i];
    return -1;
}

int BSGS (int a,int b,int n)
{
	memset(head,-1,sizeof(head));
	e=1;
	if (b==1) return 0;
	int m = sqrt(1.0*n), j;
	i64 x=1,p=1,i;
	for (i=0;i<m;i++, p = p*a%n )  //p对应a^i
		insert(p*b%n,i);
	for (i=m; ;i+=m)
	{
		if ( (j = find(x = x*p%n)) != -1 ) return i-j;
		if (i>n) break;
	}
	return -1;
}

int main ()
{
#ifdef ONLINE_JUDGE
#else
	freopen("read.txt","r",stdin);
#endif
	int p,b,n;
	while (~scanf("%d%d%d",&p,&b,&n))
	{
		int ans=BSGS(b,n,p);
		if (ans==-1)
			printf("no solution\n");
		else
			printf("%d\n",ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值