POJ 3621 Sightseeing Cows(最优比率环/01分数规划)

思路:

01分数规划的第三题。(前两题分别是poj 2976 2728)
这道题能明显感觉到不适用于迭代法(Dinkelbach)
一开始写的时候本打算用的,然后写的过程中发现记录哪些点组成的环是一件很复杂的事情。而且,spfa的思想也是检测负环 && 最短路。
(其实要想记录的来一个pre【】数组记录修改此节点的前驱节点也可以,只是麻烦。。毕竟spfa已经很长了。。)
注意这里有一个小点:有关构不成环的情况,我们没有必要在spfa中判断,只需要不断的更新区间就好,最后发现ans == -1,于是判断不联通。(在spfa判断有没有环花费太大了。。)
对于01规划的题,我都是习惯于构造出大于等于0的函数,比如这题: rate(r)=rtimevalue0

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <math.h>
#include <queue>
#include <string.h>
typedef long long int lli;
using namespace std;

struct edge{
    int to,v,next;
    double newv;//构造的新的权值
}edg[5050];
int head[1010];
int cnte;
void addedge(int x,int y,int v){
    edg[++cnte].to = y;
    edg[cnte].v = v;
    edg[cnte].next = head[x];
    head[x] = cnte;
}
int vis[1010];//
int a[1010];//存value
double dis[1010];
int cntn[1010];

int l,p;
bool rate(double r){//spfa 只判断有无负权环
    memset(vis,0,sizeof(vis));
    memset(cntn,0,sizeof(cntn));
    memset(dis,0,sizeof(dis));
    for(int i = 1;i <= p;i++){
        edg[i].newv = r*edg[i].v-a[edg[i].to];
    }
    queue<int> q;
    for(int i = 1;i <= l;i++){//亮点!!这个操作避免了多次spfa
        q.push(i);
    }
    int po;
    while(!q.empty()){
        po = q.front();
        q.pop();
        vis[po] = false;
        for(int i = head[po];i != -1;i = edg[i].next){
            if(dis[edg[i].to] > dis[po] + edg[i].newv){
                dis[edg[i].to] = dis[po] + edg[i].newv;
                if(vis[edg[i].to] == false){
                    q.push(edg[i].to);
                    vis[edg[i].to] = true;
                    cntn[edg[i].to]++;
                    if(cntn[edg[i].to] >= l){
                        return true;//负权环
                    }
                }
            }
        }
    }
    return false;
}


int main(){
    scanf("%d%d",&l,&p);
    for(int i = 1;i <= l;i++){
        scanf("%d",a+i);
    }
    int x,y,z;
    memset(head,-1,sizeof(head));
    for(int i = 1;i <= p;i++){
        scanf("%d%d%d",&x,&y,&z);
        addedge(x,y,z);
    }
    double r = 10000000,l = 0,mid = 0;
    double ans = -1;
    bool fla;
    while(r-l > 1e-6){
        mid = (l+r)/2;
        fla = rate(mid);
        if(fla == true){
            l = mid;
            ans = mid;
        }
        else{
            r = mid;
        }
    }
    if(fla != -1){
        printf("%.2f\n",mid);
    }
    else{
        printf("0\n");
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值