关闭

【LeetCode】238. Product of Array Except Self

96人阅读 评论(0) 收藏 举报
分类:

Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].

Solve it without division and in O(n).

For example, given [1,2,3,4], return [24,12,8,6].

Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)


class Solution {
public:
    vector<int> productExceptSelf(vector<int>& nums) {
	vector<int> results;
	int length_nums = nums.size();
	int p = 1;

	results.push_back(1);
	results.push_back(nums.at(0));

	for (int i = 2; i<length_nums; i++){
		results.push_back(nums[i-1]*results[i-1]);
	}

	p = nums.at(length_nums - 1);

	for (int i = (length_nums - 2);i>=0 ; i--){
		results[i] = p*results[i];
		p = p*nums[i];
	}


	return results;
}
};


解题思路

说来也很惭愧,这样级别的思考靠我自己想是想不出来的。得靠别人的点拨。

不能使用除法,除了结果的向量以外只能使用常数级别的空间,而且时间复杂度为O(n)

其实道理就很简单,将数组遍历两次。

第一次将每个数的左边的所有数的乘积记录下来在数组当中。

第二次将每个数的右边的所有数的乘积和第一次记录下来的数相乘便可以完整得到除了该数自己的所有数的乘积

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:4250次
    • 积分:280
    • 等级:
    • 排名:千里之外
    • 原创:24篇
    • 转载:2篇
    • 译文:1篇
    • 评论:0条