关闭

交换排序之快速排序

标签: 快速排序算法
85人阅读 评论(0) 收藏 举报
分类:

应用交换排序思想的另一种经典排序算法是快速排序,快速排序的思想可以大致分成两大部分,一部分是利用分治策略的递归算法,另一部分是根据随机选择元素作为基准对整个数组进行的划分。算法先实现对数组进行划分,分成两个子数组,左边的子数组元素都比基准元素小,右边的子数组元素都比基准元素大。然后再对这两个子数组递归的进行划分,直到最后数组中只剩下一个元素。

数组划分

我们使用一个例子来说明对数组的划分过程
给定一个数组如下

这里写图片描述

选择第一个元素A[0]作为基准元素。X=A[0]

定义两个变量i=0,j=A.length1

这里写图片描述

如果i<j,首先判断A[j]与基准X的大小关系,例子中有A[9]>X,则该元素比基准大,放在基准后面不动,只需将jj运算向前移一位。接着判断A[j]=A[8]=48<72,小于基准的数应该放在前面,因此我们做A[i]=A[j]A[0]=A[8]=48,(这个时候不需要交换A[i]A[j],因为我们已经将A[0]作为基准保存起来了,即使A[0]元素被替换掉也没有关系)。然后将i向后移一位

这里写图片描述

到这里,数组中元素A[j]=A[8]已经被放到了第一个位置,所以我们这时候不移动j下标的愿意是因为后面如果找到比基准大的元素还要放在这里。
,下标i指向A[1]=6这个元素,将6与基准72比较,有6<72,比72小的元素就是放在前面的,所以不加操作继续将下标i后移,到57这个元素时的情况与6相同,继续后移i,到i=3时,有A[i]=88>72,做操作A[j]=A[8]=A[i]=A[3],则有

这里写图片描述

同样的,这里我们不再动下标i(因为这个元素已经被放到了后面,这个位置一会要放比基准小的本来在数组后面的元素)。向前移动下标j,到元素73位置处,有73>72,所以不做任何操作,再向前移动下标j83位置处还是同样的不动,直到下标j到达位置42位置处,发现42<72,做操作A[i]=A[3]=A[j]=A[5]

这里写图片描述

到这里之后同样的不再移动下标j(这个位置留着放前面过来的大于基准的元素),向后移动i到元素60的位置,因为60<72所以不做操作继续向后移动i,到这里之后有i=j=5不再满足i<j。此时将基准元素放在A[5]=72,完成划分并返回下标i,成功将数组划分成两个子数组。

递归调用

接下来有了对数组划分的算法之后,直接根据返回的两个子数组之间的划分下标两次递归调用这个数组划分算法,直到每个数组中都只剩下一个元素。

Java实现的代码如下

public class QuickSort {

    public static void main(String []args){
        int[]A={72,6,57,88,60,42,83,73,48,85};
        quickSort(A,0,A.length-1);

        for(int i=0;i<A.length;i++){
            System.out.println(A[i]);
        }
    }

    public static void quickSort(int[] A,int l,int r){      
        if(l<r){
            int X=A[l];
            int i=l;
            int j=r;
            while(i<j){
                while(i<j && A[j]>=X){
                    j--;
                }
                if(i<j){
                    A[i]=A[j];
                    i++;
                }
                while(i<j && A[i]<=X){
                    i++;
                }
                if(i<j){
                    A[j]=A[i];
                    j--;
                }
            }
            A[i]=X;
            quickSort(A,l,i-1);
            quickSort(A,i+1,r);
        }

    }

}

上述代码可以进行简单的简化,但是为了清楚的表达整个算法的过程,我没有对其进行调整。这样可以分别对应每一部操作过程来更清楚的理解快速排序的过程。
输出结果
这里写图片描述

LZ也是菜鸟一枚,正在努力学习中,如果哪里说的有错误的地方还劳烦大神指出来我会认真改正的哦

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:611次
    • 积分:63
    • 等级:
    • 排名:千里之外
    • 原创:6篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档