分治策略求解最大子数组问题

本文是作者学习算法导论的笔记,介绍了如何使用分治策略解决最大子数组问题。通过将数组分为两半,分别处理完全在左侧、完全在右侧和跨越中点的子数组,最终找到最大子数组。算法的时间复杂度为线性对数级别,O(nlgn)。
摘要由CSDN通过智能技术生成

LZ是菜鸟一枚,非计算机专业学生,正在学习算法导论这本书,希望养成学习完一个问题之后进行归纳整理的习惯,所以开始了博客之路,内容都是最基础的笔记,如果发现错误希望你能慷慨的帮我指出来,这样我才能改正并进步哦。

话不多说 下面是第一次记录么么哒


问题描述:

给定一个数组A[low,...,high],含有负数(否则研究这一问题没有意义)。寻找A的和最大的非空连续子数组问题称为求解最大子数组问题,得到的数组为最大子数组。


使用的算法:

分治策略。

首先要明确分治策略意味着要将数组划分成两个规模尽可能相等的子数组。也就是说要找到数组的中间位置,用mid表示,然后分别考虑数组A[low,...,mid]和A[mid+1,...high]。A[low,...,high]的任何连续子数组A[i,...,j]所处的位置有三种可能:

(1)完全的处在左侧的子数组A[low,...,mid]内。

(2)完全的处在右侧的子数组A[mid+1,...high]内。

(3)跨越了中点mid,即low<=i<=mid, mid+1<=j<=high

对于(1)和(2)中的两个情况,这两个子问题仍然是最大子数组问题,也即是说与原问题相同的规模较小的子问题。因此下面的重点放在第(3)个情况,寻找跨越中点的最大子数组,最后在这三种情况中选择和最大的,既是问题的解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值