概述:
Hbase对Mapreduce API进行了扩展,方便Mapreduce任务读写HTable数据。
一个简单示例:
说明:从日志表中,统计每个IP访问网站目录的总数
package man.ludq.hbase;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
public class ExampleTotalMapReduce{
public static void main(String[] args) {
try{
Configuration config = HBaseConfiguration.create();
Job job = new Job(config,"ExampleSummary");
job.setJarByClass(ExampleTotalMapReduce.class); // class that contains mapper and reducer
Scan scan = new Scan();
scan.setCaching(500); // 1 is the default in Scan, which will be bad for MapReduce jobs
scan.setCacheBlocks(false); // don't set to true for MR jobs
// set other scan attrs
//scan.addColumn(family, qualifier);
TableMapReduceUtil.initTableMapperJob(
"access-log", // input table
scan, // Scan instance to control CF and attribute selection
MyMapper.class, // mapper class
Text.class, // mapper output key
IntWritable.class, // mapper output value
job);
TableMapReduceUtil.initTableReducerJob(
"total-access", // output table
MyTableReducer.class, // reducer class
job);
job.setNumReduceTasks(1); // at least one, adjust as required
boolean b = job.waitForCompletion(true);
if (!b) {
throw new IOException("error with job!");
}
} catch(Exception e){
e.printStackTrace();
}
}
public static class MyMapper extends TableMapper<Text, IntWritable> {
private final IntWritable ONE = new IntWritable(1);
private Text text = new Text();
public void map(ImmutableBytesWritable row, Result value, Context context) throws IOException, InterruptedException {
String ip = Bytes.toString(row.get()).split("-")[0];
String url = new String(value.getValue(Bytes.toBytes("info"), Bytes.toBytes("url")));
text.set(ip+"&"+url);
context.write(text, ONE);
}
}
public static class MyTableReducer extends TableReducer<Text, IntWritable, ImmutableBytesWritable> {
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
Put put = new Put(key.getBytes());
put.add(Bytes.toBytes("info"), Bytes.toBytes("count"), Bytes.toBytes(String.valueOf(sum)));
context.write(null, put);
}
}
}
参考文档:
1、Mapreduce读取和写入Hbase(从A表读取数据,统计结果放入B表,非常详细,附有代码说明以及流程)
2、Mapreduce操作Hbase(官方文档,包括 读/读写/多表输出/输出到文件/输出到RDBMS/Job中访问其他的HBase Tables)