高等数学

  • 泰勒公式

动点用静点表示,\small f(x)在点\small x_{0}某邻域具有\small n+1阶导,则

\small f(x)=f(x_{0})+f{}'(x_{0})(x-x_{0})+\tfrac{1}{2!}f{}''(x_{0})(x-x_{0})^{2}+...+\tfrac{1}{n!}f^{(n)}(x_{0})(x-x_{0})^{n}+R_{n}(x)

可推出常用函数的等价无穷小,所以常用于求无穷小的极限。

常用于求高阶导数。

 

  • 拉格朗日中值定理

函数和导数关联。

在[a,b]上连续,在(a,b)内可导,则在(a,b)存在一个\small \xi,使得\small \tfrac{f(b)-f(a)}{b-a}=f{}'(\xi )

常用于求复杂极限、 估值不等式、

 

  • 牛顿-莱布尼斯公式

求定积分

\small f(x)\small \left [ a,\right b ]连续,则\small \int_{a}^{b}f(x)d_{x}=F(x)|_{x=a}^{x=b}

 

  • 欧拉公式

将三角函数与复数指数函数相关联

虚数\small i^{2}=-1

\small e^{ix}=\cos x + i\sin x

 

参考:https://zhuanlan.zhihu.com/p/36311622 (高数上)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值