- 泰勒公式
动点用静点表示,在点某邻域具有阶导,则
可推出常用函数的等价无穷小,所以常用于求无穷小的极限。
常用于求高阶导数。
- 拉格朗日中值定理
函数和导数关联。
在[a,b]上连续,在(a,b)内可导,则在(a,b)存在一个,使得
常用于求复杂极限、 估值不等式、
- 牛顿-莱布尼斯公式
求定积分
在连续,则
- 欧拉公式
将三角函数与复数指数函数相关联
虚数
动点用静点表示,在点某邻域具有阶导,则
可推出常用函数的等价无穷小,所以常用于求无穷小的极限。
常用于求高阶导数。
函数和导数关联。
在[a,b]上连续,在(a,b)内可导,则在(a,b)存在一个,使得
常用于求复杂极限、 估值不等式、
求定积分
在连续,则
将三角函数与复数指数函数相关联
虚数