bzoj2820 YY的GCD(反演)

Description

神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种
傻×必然不会了,于是向你来请教……多组输入

Input

第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, M

Output

T行,每行一个整数表示第i组数据的结果

Sample Input

2

10 10

100 100

Sample Output

30

2791

HINT

T = 10000
N, M <= 10000000


[ Submit][ Status][ Discuss]


分析:
题面和bzoj2818一样,但是询问多了很多

我们一开始化的式子是:
这里写图片描述

这个式子可以在sqrt(n)的时间内解决已知gcd(x,y)的问题

这里写图片描述
但是如果我们直接枚举素数,此题必T无疑
所以我们需要考虑进一步优化:

式子中有一个枚举d的过程,
之所以可以把时间压缩到sqrt(n),是因为我们使用了一种很玄学的分块
我们能不能换一下枚举顺序,使得整个式子都可以用分块呢:

T=k*d
这里写图片描述

其中p是质数(实际上是T的质因数)

那么如果我们能预处理这里写图片描述,这个问题就能在O(sqrt(n)+sqrt(m))的时间内解决

我们可以直接暴力枚举质数p,然后用p去更新范围内p的倍数

n以内质数的个数接近nlogn
对于每个素数来说,枚举倍数的均摊复杂度是O(logn)
所以暴力预处理的复杂度是接近O(n)的

tip

我们在枚举T的时候就可以用分块法了
注意一定要预处理出前缀和

//这里写代码片
#include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long

using namespace std;

const int N=10000002;
ll mu[N],sum[N];
int sshu[N>>2],tot=0,n,m;
bool no[N];

void make()
{
    mu[1]=1;
    for (int i=2;i<N;i++)
    {
        if (!no[i])
        {
            sshu[++tot]=i;
            mu[i]=-1;
        }
        for (int j=1;j<=tot&&i*sshu[j]<N;j++)
        {
            no[sshu[j]*i]=1;
            if (i%sshu[j]==0)
            {
                mu[sshu[j]*i]=0;
                break;
            }
            mu[sshu[j]*i]=-mu[i];
        }
    }

    for (int i=1;i<=tot&&sshu[i]<N;i++)
        for (int j=sshu[i];j<N;j+=sshu[i])
            sum[j]+=mu[j/sshu[i]];
    for (int i=2;i<N;i++) sum[i]+=sum[i-1];
    //预处理出前缀和
}

void solve(int n,int m)
{
    int last;
    ll ans=0;
    for (int i=1;i<=min(n,m);i=last+1)
    {
        last=min(n/(n/i),m/(m/i));
        ans=ans+(sum[last]-sum[i-1])*(n/i)*(m/i);
    }
    printf("%lld\n",ans);
}

int main()
{
    make();
    int T;
    scanf("%d",&T);
    while (T--)
    {
        scanf("%d%d",&n,&m);
        solve(n,m);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值