bzoj2694 Lcm(反演)

Description

这里写图片描述
对于任意的>1的n gcd(a, b)不是n^2的倍数
也就是说gcd(a, b)没有一个因子的次数>=2

Input

一个正整数T表示数据组数
接下来T行 每行两个正整数 表示N、M

Output

T行 每行一个整数 表示第i组数据的结果

Sample Input

4
2 4
3 3
6 5
8 3

Sample Output

24
28
233
178

HINT

T <= 10000
N, M<=4000000


分析:
要求gcd(a,b)不能含平方因子,所以gcd(a,b)一定是mu不等于0的数
那么我们设所有满足条件的数为p
如果我们枚举这个p,则可以得到式子:
这里写图片描述

实际上这个式子和LCM之和的化简方式大同小异(只是最开始的枚举元素不同而已)

这里写图片描述

式子中有一个枚举p的愚蠢操作
我们肯定不能无脑枚举啊,所以考虑进一步优化:
这里写图片描述

所以我们只要预处理出:这里写图片描述
就可以解决该问题了

一开始我在想能不能线性筛,
但是不要忘了最开始我们的假设:

p是mu值不等于0的数

所以我们直接枚举mu不等于0的数,用它更新它的倍数,这样的时间复杂度均摊应该是不超过O(nlogn)

tip

这道题的模数非常特殊,是2的整数次幂,
所以我们直接用int自然溢出,最后取模即可
最后的取%:

ans=(ans%p+p)%p;

(一开始少些了一个+p,就WA掉了,感觉很鬼)

//这里写代码片
#include<cstdio>
#include<cstring>
#include<iostream>

using namespace std;

const int N=4000005;
const int p=1<<30;
int n,m,sshu[N],tot=0,mu[N],d[N];
bool no[N];

void make()
{
    mu[1]=1;
    for (int i=2;i<N;i++)
    {
        if (!no[i])
        {
            sshu[++tot]=i;
            mu[i]=-1;
        }
        for (int j=1;j<=tot&&sshu[j]*i<N;j++)
        {
            no[sshu[j]*i]=1;
            if (i%sshu[j]==0)
            {
                mu[i*sshu[j]]=0;
                break;
            }
            mu[i*sshu[j]]=-mu[i];
        }
    }

    for (int i=1;i<N;i++)
    if (mu[i]!=0)
        for (int j=i;j<N;j+=i)
            d[j]=d[j]+i*(j/i)*(j/i)*mu[j/i];
    for (int i=2;i<N;i++) d[i]+=d[i-1];     //前缀和 
}

int sum(int n)
{
    return n*(n+1)/2;
}

int main()
{
    make();
    int T;
    scanf("%d",&T);
    while (T--)
    {
        scanf("%d%d",&n,&m);
        int last;
        int ans=0;
        for (int i=1;i<=min(n,m);i=last+1)
        {
            last=min(n/(n/i),m/(m/i));
            ans=ans+sum(n/i)*sum(m/i)*(d[last]-d[i-1]);
        }
        ans=(ans%p+p)%p;
        printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值