Description
对于任意的>1的n gcd(a, b)不是n^2的倍数
也就是说gcd(a, b)没有一个因子的次数>=2
Input
一个正整数T表示数据组数
接下来T行 每行两个正整数 表示N、M
Output
T行 每行一个整数 表示第i组数据的结果
Sample Input
4
2 4
3 3
6 5
8 3
Sample Output
24
28
233
178
HINT
T <= 10000
N, M<=4000000
分析:
要求gcd(a,b)不能含平方因子,所以gcd(a,b)一定是mu不等于0的数
那么我们设所有满足条件的数为p
如果我们枚举这个p,则可以得到式子:
实际上这个式子和LCM之和的化简方式大同小异(只是最开始的枚举元素不同而已)
式子中有一个枚举p的愚蠢操作
我们肯定不能无脑枚举啊,所以考虑进一步优化:
所以我们只要预处理出:
就可以解决该问题了
一开始我在想能不能线性筛,
但是不要忘了最开始我们的假设:
p是mu值不等于0的数
所以我们直接枚举mu不等于0的数,用它更新它的倍数,这样的时间复杂度均摊应该是不超过O(nlogn)
tip
这道题的模数非常特殊,是2的整数次幂,
所以我们直接用int自然溢出,最后取模即可
最后的取%:
ans=(ans%p+p)%p;
(一开始少些了一个+p,就WA掉了,感觉很鬼)
//这里写代码片
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int N=4000005;
const int p=1<<30;
int n,m,sshu[N],tot=0,mu[N],d[N];
bool no[N];
void make()
{
mu[1]=1;
for (int i=2;i<N;i++)
{
if (!no[i])
{
sshu[++tot]=i;
mu[i]=-1;
}
for (int j=1;j<=tot&&sshu[j]*i<N;j++)
{
no[sshu[j]*i]=1;
if (i%sshu[j]==0)
{
mu[i*sshu[j]]=0;
break;
}
mu[i*sshu[j]]=-mu[i];
}
}
for (int i=1;i<N;i++)
if (mu[i]!=0)
for (int j=i;j<N;j+=i)
d[j]=d[j]+i*(j/i)*(j/i)*mu[j/i];
for (int i=2;i<N;i++) d[i]+=d[i-1]; //前缀和
}
int sum(int n)
{
return n*(n+1)/2;
}
int main()
{
make();
int T;
scanf("%d",&T);
while (T--)
{
scanf("%d%d",&n,&m);
int last;
int ans=0;
for (int i=1;i<=min(n,m);i=last+1)
{
last=min(n/(n/i),m/(m/i));
ans=ans+sum(n/i)*sum(m/i)*(d[last]-d[i-1]);
}
ans=(ans%p+p)%p;
printf("%d\n",ans);
}
return 0;
}