关闭

最小生成树kruskal算法

标签: kruskal最短路算法路径压缩
720人阅读 评论(0) 收藏 举报
分类:
最小生成树(最小权值生成树的简称)。
原理:每次选择一条最小权边,直至构成一棵最小生成树。
最小生成树的构建过程:
1.排序。将图中所有边的权值按从小到大的顺序排列成L:T<-NULL.
2.当|T|<n-1时重复下面操作:
a。选L中的最小权边e。
b。若TU{e}中不存在回路,将e加入T:T<-TU{e}。
c。从L中删除e:L<-L-{e}.
3.结束。
代码如下:
//并查集操作
int findfather(int i)
{
 if(root[i] == i)
   return root[i] ;
 else
  return findfather(root[i]);
}
void makeset(int i)
{
 root[i] = i;
 
 heavy[i] = 1 ;
}
void unio(int i , int j)
{
 
  if(heavy[i] >= heavy[j])
  {
    root[j] = i ;
    heavy[i] = heavy[i] + heavy[j] ; 
  }
  else 
  {
   root[i] = j ;
   heavy[j] = i ;
  }
}
typedef struct 
{
  int x , y , distance ;
  
}Edge ;
void kruskal()
{
 sort(g.begin() , g.end() , com) ;
 
 int shortlength = 0 ;
 
 int s , t ;
 
 for(int i = 0; i < n; i ++)
 {
   s = root[g[i].x] ;
   
   t = root[g[i].y] ;
   
   if(s != t)
   {
    shortlength = shortlength + g[i].distance ;
    unio(s , t) ;
   }
 }
}
 上面的findfather()函数还是路径压缩下比较好。
代码如下:
int findfather(int i)
{
 int k , j ;
 j = i ;
 while(root[i] != i)
 {
   i = root[i] ;
 }
 while(j != i)
 {
  k = root[j] ;
  root[j] = i ;
  j = k ;
 }
 return i ;
}
 
1
1

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:92900次
    • 积分:2489
    • 等级:
    • 排名:第14796名
    • 原创:163篇
    • 转载:14篇
    • 译文:0篇
    • 评论:0条