使用seq2seq模型实现一个聊天机器人

本文介绍了如何利用TensorFlow的seq2seq模型建立一个聊天机器人。首先,针对tensorflow-0.12.0-rc1版本的一个bug进行了修复。接着,对输入文本进行预处理,包括替换类别编号、分离字符、转换为简体并标准化非国字字符。训练数据分为类别和客户询问两个文件。使用字向量并调整分桶大小以适应模型训练。最后,通过设置GPU K40的超高速运行状态来加速训练和测试过程。
摘要由CSDN通过智能技术生成

使用了TensorFlow中的transalte程序实现对问题的分类,即输入一个问题,输出一个问题的编码。具体过程如下:

(1)使用的版本为tensorflow-0.12.0-rc1,但该版本中存在一个bug,需要进行修改,将data_utils.py中的函数initialize_vocabulary中:

rev_vocab =[line.strip() for line in rev_vocab]

修改为:
rev_vocab = [tf.compat.as_bytes(line.strip()) for line inrev_vocab]

或者参考链接:

https://github.com/tensorflow/models/issues/771

 

 (2)修改源代码:

可参考链接:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值