- 博客(4541)
- 资源 (10)
- 收藏
- 关注
原创 YOLOv8/v10/v11/v12 百大项目实战专栏目录
在众多目标检测算法中,YOLO(You Only Look Once) 凭借其卓越的速度与精度平衡,始终屹立于技术浪潮之巅。特别是Ultralytics公司推出的YOLOv8、以及未来可期的v10、v11、v12,以其更加友好的设计、更强大的性能和更灵活的部署方案,成为了开发者、研究员和工程师们实现视觉AI应用的首选框架。
2025-08-26 17:10:21
1148
1
原创 基于YOLOv8/YOLOv10/YOLOv11/YOLOv12与SpringBoot的前后端分离香蕉成熟度识别检测系统(DeepSeek智能分析+web交互界面)
本项目旨在设计并实现一个基于深度学习与Web技术的香蕉成熟度智能识别与检测系统。系统核心采用前沿的YOLO系列目标检测模型(包括YOLOv8, v10, v11, v12),实现对香蕉图像的快速、精准成熟度分类。后端使用SpringBoot框架构建RESTful API,前端与后端分离,提供友好的Web交互界面。系统集成了用户认证、多模型切换、多种检测模式(图像、视频、实时摄像头)、检测记录管理、数据可视化以及管理员后台等完整功能。通过结合DeepSeek等AI分析能力,该系统不仅是一个高效的计算机视觉应用
2025-12-19 15:26:56
857
原创 基于YOLOv8/YOLOv10/YOLOv11/YOLOv12与SpringBoot的前后端分离花生种子霉变识别检测系统(DeepSeek智能分析+web交互界面)
本项目旨在开发一个基于深度学习与Web技术的前后端分离式花生种子霉变智能识别与检测系统。系统核心采用先进的YOLOv8/v10/v11/v12系列目标检测模型,对花生种子图像进行高效、精准的二分分类(‘with mold’ 霉变 / ‘without mold’ 正常)。后端使用SpringBoot框架构建RESTful API,前端提供友好的Web交互界面,实现了用户管理、多模态检测(图像、视频、实时摄像头)、AI分析结果可视化与数据管理等功能。创新性地集成DeepSeek智能分析以增强检测能力,并将所有
2025-12-19 15:24:50
821
原创 基于YOLOv8/YOLOv10/YOLOv11/YOLOv12与SpringBoot的前后端分离学生课堂行为识别检测系统(DeepSeek智能分析+web交互界面)
本项目旨在研发一个基于先进YOLO系列目标检测算法(YOLOv8/v10/v11/v12)与SpringBoot框架的前后端分离式学生课堂行为智能识别与分析系统。系统通过深度学习技术,自动识别学生在课堂上的多种典型行为,如举手、阅读、书写、使用手机、低头、趴桌等。系统提供Web交互界面,支持用户管理、多种检测模式(图像、视频、实时摄像头)、模型动态切换、数据可视化以及集成DeepSeek智能分析功能。所有识别记录与用户数据均持久化存储于MySQL数据库,为课堂教学质量评估与学生专注度分析提供了高效、智能的解
2025-12-19 15:23:25
691
原创 基于深度学习的裂缝检测系统(web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)
本项目是一个基于先进深度学习技术构建的、功能全面且用户友好的裂缝智能检测系统。系统采用现代化的前后端分离架构,前端使用Vue.js构建响应式用户界面,后端采用SpringBoot框架提供稳健的API服务。核心检测算法集成了最新的YOLO系列模型(v8/v10/v11/v12),为用户提供了灵活且高性能的模型选择。此外,系统创新性地引入了DeepSeek大语言模型,为检测结果提供智能化的分析与解释,极大地提升了系统的实用价值。系统不仅支持图像、视频和摄像头实时流的全面检测模式,还配备了完善的用户管理、数据可视
2025-12-19 15:22:25
1260
原创 基于深度学习的施工现场安全检测系统(web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)
本项目设计并实现了一个集成了前沿深度学习技术与现代化Web开发框架的施工现场安全智能检测与管理系统。系统核心采用最新的YOLO系列目标检测模型(包括YOLOv8, YOLOv10, YOLOv11, YOLOv12),构建了一个高精度、高效率的施工现场安全隐患实时识别引擎。通过引入DeepSeek大语言模型的智能分析能力,系统不仅能够识别目标,更能对复杂场景进行逻辑推理与风险描述,极大地提升了安全预警的智能化水平。系统前端采用Vue.js构建响应式用户界面,后端基于SpringBoot提供稳健的RESTfu
2025-12-19 15:20:18
1058
原创 基于深度学习的皮肤病识别检测系统(web界面+YOLOv8/v10/v11/v12+DeepSeek智能分析 +前后端分离)
本论文介绍了一个基于深度学习的综合性皮肤病识别与检测系统,该系统集成了最新的YOLO系列目标检测算法、DeepSeek智能分析引擎和现代化的Web交互界面。系统实现了对七种常见皮肤病变的自动识别和分类,包括鲍温氏病、基底细胞癌、良性角化病变、皮肤纤维瘤、黑色素瘤、黑色素细胞痣和血管病变。通过构建前后端分离的架构,系统提供了用户友好的Web界面,支持图片、视频和实时摄像头检测等多种输入方式。系统采用MySQL数据库进行数据存储和管理,实现了用户认证、模型切换、检测记录管理和可视化分析等核心功能模块。实验结果表
2025-12-19 15:18:49
802
原创 基于深度学习的无人机识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)
本项目旨在设计并实现一个高效、精准、用户友好的无人机自动识别与综合管理系统。系统核心采用当前最前沿的YOLOv8/YOLOv10/YOLOv11/YOLOv12目标检测算法,构建了一个高性能的无人机检测模型。项目创新性地集成了DeepSeek大型语言模型的智能分析能力,赋予系统对检测结果的语义理解和生成式描述功能。系统架构采用前后端分离的现代化设计模式,后端使用Spring Boot等框架构建稳健的API服务,前端采用Vue.js构建响应式、高交互的Web界面,确保了良好的可维护性和扩展性。系统功能全面,不
2025-12-19 15:17:30
945
原创 基于深度学习的车辆类型识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)
本文详细阐述了一个集成了先进深度学习目标检测算法与现代化Web交互界面的智能车辆类型识别检测系统的设计与实现。该系统以多版本YOLO系列模型(包括最新的YOLOv8, YOLOv10, YOLOv11, YOLOv12)为核心检测引擎,构建了一个功能完备、前后端分离的Web应用平台。系统不仅实现了对图片、视频及摄像头实时流的精准车辆检测与12类精细车型分类,还创新性地整合了DeepSeek大语言模型的AI智能分析功能,为检测结果提供语义化描述与深入洞察。后端采用稳健的MySQL数据库对用户信息、检测记录及模
2025-12-19 15:16:46
878
原创 基于深度学习的晶圆体缺陷识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)
本文提出了一种基于深度学习技术的晶圆体缺陷识别检测系统,该系统集成了当前最先进的YOLO系列目标检测算法(包括YOLOv8、YOLOv10、YOLOv11和YOLOv12),并创新性地融入了DeepSeek智能分析模块。系统采用前后端分离的现代化Web架构,具备完善的用户管理、多模态检测(图像、视频、实时摄像头)、数据可视化和智能分析功能。通过优化的深度学习模型和精心设计的用户界面,本系统能够准确识别9类晶圆缺陷,包括中心缺陷、环形缺陷、边缘定位缺陷等,在半导体制造质量控制领域展现出显著的实用价值。实验结果
2025-12-19 15:15:28
703
原创 基于深度学习的老师课堂行为识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)
本文介绍了一个集成了最新计算机视觉技术与现代Web开发框架的综合性教师课堂行为识别与分析系统。该系统旨在通过非侵入式手段,自动识别和记录教师在课堂教学中的关键行为模式,为教学评估、教师专业发展与教育研究提供客观、量化的数据支持。系统的核心采用以YOLOv8为基准,并兼容至前沿的YOLOv12系列模型的目标检测算法,确保了对“翘腿”、“指导学生”、“看屏幕”、“讲授/提问”、“使用手机”、“书写”等六类典型课堂行为的高精度、实时识别。创新性地,系统集成了DeepSeek大型语言模型的智能分析功能,能够对检测结
2025-12-19 15:13:58
911
原创 基于深度学习的安全帽佩戴识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)
本文详细介绍了一套功能完整、技术先进的“基于深度学习的安全帽佩戴识别检测系统”。该系统旨在解决工业生产、建筑工地、电力巡检等高风险场景下的人员安全监管难题。系统核心采用当下最前沿的YOLO系列目标检测模型(集成YOLOv8、YOLOv10、YOLOv11及YOLOv12),实现了对“安全帽”(helmet)和“头部”(head,即未佩戴安全帽)两类目标的高精度、实时检测。项目不仅构建了强大的算法后端,还创新性地开发了现代化的Web应用界面,采用前后端分离架构,确保了系统的可维护性与可扩展性。系统功能全面,支
2025-12-19 15:11:44
649
原创 基于深度学习的人脸表情识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)
本研究设计并实现了一套高效、可扩展且用户友好的实时人脸表情识别系统。系统核心采用最前沿的深度学习目标检测架构——YOLO系列模型(支持YOLOv8至YOLOv12的动态切换),在包含‘愤怒’、‘厌恶’、‘恐惧’、‘快乐’、‘中性’、‘悲伤’、‘惊讶’七类表情的自有数据集上进行训练与优化。为实现便捷的交互与高效的管理,本系统创新性地构建了前后端分离的现代化Web应用:前端基于Vue.js框架提供直观的图形界面,后端业务逻辑由Spring Boot框架处理,而核心检测服务则通过Python实现,确保了算法性能与
2025-12-19 15:08:41
642
原创 基于深度学习的人脸表情识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)
本研究设计并实现了一套高效、可扩展且用户友好的实时人脸表情识别系统。系统核心采用最前沿的深度学习目标检测架构——YOLO系列模型(支持YOLOv8至YOLOv12的动态切换),在包含‘愤怒’、‘厌恶’、‘恐惧’、‘快乐’、‘中性’、‘悲伤’、‘惊讶’七类表情的自有数据集上进行训练与优化。为实现便捷的交互与高效的管理,本系统创新性地构建了前后端分离的现代化Web应用:前端基于Vue.js框架提供直观的图形界面,后端业务逻辑由Spring Boot框架处理,而核心检测服务则通过Python实现,确保了算法性能与
2025-12-16 15:27:54
1021
2
原创 基于深度学习的安全帽佩戴识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)
本文详细介绍了一套功能完整、技术先进的“基于深度学习的安全帽佩戴识别检测系统”。该系统旨在解决工业生产、建筑工地、电力巡检等高风险场景下的人员安全监管难题。系统核心采用当下最前沿的YOLO系列目标检测模型(集成YOLOv8、YOLOv10、YOLOv11及YOLOv12),实现了对“安全帽”(helmet)和“头部”(head,即未佩戴安全帽)两类目标的高精度、实时检测。项目不仅构建了强大的算法后端,还创新性地开发了现代化的Web应用界面,采用前后端分离架构,确保了系统的可维护性与可扩展性。系统功能全面,支
2025-12-06 15:24:55
712
原创 基于深度学习的老师课堂行为识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)
本文介绍了一个集成了最新计算机视觉技术与现代Web开发框架的综合性教师课堂行为识别与分析系统。该系统旨在通过非侵入式手段,自动识别和记录教师在课堂教学中的关键行为模式,为教学评估、教师专业发展与教育研究提供客观、量化的数据支持。系统的核心采用以YOLOv8为基准,并兼容至前沿的YOLOv12系列模型的目标检测算法,确保了对“翘腿”、“指导学生”、“看屏幕”、“讲授/提问”、“使用手机”、“书写”等六类典型课堂行为的高精度、实时识别。创新性地,系统集成了DeepSeek大型语言模型的智能分析功能,能够对检测结
2025-12-05 17:29:08
688
原创 基于深度学习的晶圆体缺陷识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)
本文提出了一种基于深度学习技术的晶圆体缺陷识别检测系统,该系统集成了当前最先进的YOLO系列目标检测算法(包括YOLOv8、YOLOv10、YOLOv11和YOLOv12),并创新性地融入了DeepSeek智能分析模块。系统采用前后端分离的现代化Web架构,具备完善的用户管理、多模态检测(图像、视频、实时摄像头)、数据可视化和智能分析功能。通过优化的深度学习模型和精心设计的用户界面,本系统能够准确识别9类晶圆缺陷,包括中心缺陷、环形缺陷、边缘定位缺陷等,在半导体制造质量控制领域展现出显著的实用价值。实验结果
2025-12-05 16:24:04
1030
原创 基于深度学习的车辆类型识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)
本文详细阐述了一个集成了先进深度学习目标检测算法与现代化Web交互界面的智能车辆类型识别检测系统的设计与实现。该系统以多版本YOLO系列模型(包括最新的YOLOv8, YOLOv10, YOLOv11, YOLOv12)为核心检测引擎,构建了一个功能完备、前后端分离的Web应用平台。系统不仅实现了对图片、视频及摄像头实时流的精准车辆检测与12类精细车型分类,还创新性地整合了DeepSeek大语言模型的AI智能分析功能,为检测结果提供语义化描述与深入洞察。后端采用稳健的MySQL数据库对用户信息、检测记录及模
2025-12-05 14:52:51
946
原创 基于深度学习的无人机识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)
本项目旨在设计并实现一个高效、精准、用户友好的无人机自动识别与综合管理系统。系统核心采用当前最前沿的YOLOv8/YOLOv10/YOLOv11/YOLOv12目标检测算法,构建了一个高性能的无人机检测模型。项目创新性地集成了DeepSeek大型语言模型的智能分析能力,赋予系统对检测结果的语义理解和生成式描述功能。系统架构采用前后端分离的现代化设计模式,后端使用Spring Boot等框架构建稳健的API服务,前端采用Vue.js构建响应式、高交互的Web界面,确保了良好的可维护性和扩展性。系统功能全面,不
2025-12-05 11:39:40
933
原创 基于深度学习的皮肤病识别检测系统(web界面+YOLOv8/v10/v11/v12+DeepSeek智能分析 +前后端分离)
本论文介绍了一个基于深度学习的综合性皮肤病识别与检测系统,该系统集成了最新的YOLO系列目标检测算法、DeepSeek智能分析引擎和现代化的Web交互界面。系统实现了对七种常见皮肤病变的自动识别和分类,包括鲍温氏病、基底细胞癌、良性角化病变、皮肤纤维瘤、黑色素瘤、黑色素细胞痣和血管病变。通过构建前后端分离的架构,系统提供了用户友好的Web界面,支持图片、视频和实时摄像头检测等多种输入方式。系统采用MySQL数据库进行数据存储和管理,实现了用户认证、模型切换、检测记录管理和可视化分析等核心功能模块。实验结果表
2025-12-04 20:35:24
628
原创 基于深度学习的施工现场安全检测系统(web界面+YOLOv8/v10/v11/v12+DeepSeek智能分析 +前后端分离)
本项目设计并实现了一个集成了前沿深度学习技术与现代化Web开发框架的施工现场安全智能检测与管理系统。系统核心采用最新的YOLO系列目标检测模型(包括YOLOv8, YOLOv10, YOLOv11, YOLOv12),构建了一个高精度、高效率的施工现场安全隐患实时识别引擎。通过引入DeepSeek大语言模型的智能分析能力,系统不仅能够识别目标,更能对复杂场景进行逻辑推理与风险描述,极大地提升了安全预警的智能化水平。系统前端采用Vue.js构建响应式用户界面,后端基于SpringBoot提供稳健的RESTfu
2025-12-04 20:34:40
613
1
原创 基于深度学习的裂缝检测系统(web界面+YOLOv8/v10/v11/v12+DeepSeek智能分析 +前后端分离)
本项目是一个基于先进深度学习技术构建的、功能全面且用户友好的裂缝智能检测系统。系统采用现代化的前后端分离架构,前端使用Vue.js构建响应式用户界面,后端采用SpringBoot框架提供稳健的API服务。核心检测算法集成了最新的YOLO系列模型(v8/v10/v11/v12),为用户提供了灵活且高性能的模型选择。此外,系统创新性地引入了DeepSeek大语言模型,为检测结果提供智能化的分析与解释,极大地提升了系统的实用价值。系统不仅支持图像、视频和摄像头实时流的全面检测模式,还配备了完善的用户管理、数据可视
2025-12-04 20:33:50
844
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离学生课堂行为识别检测系统(DeepSeek智能分析+web交互界面)
本项目旨在研发一个基于先进YOLO系列目标检测算法(YOLOv8/v10/v11/v12)与SpringBoot框架的前后端分离式学生课堂行为智能识别与分析系统。系统通过深度学习技术,自动识别学生在课堂上的多种典型行为,如举手、阅读、书写、使用手机、低头、趴桌等。系统提供Web交互界面,支持用户管理、多种检测模式(图像、视频、实时摄像头)、模型动态切换、数据可视化以及集成DeepSeek智能分析功能。所有识别记录与用户数据均持久化存储于MySQL数据库,为课堂教学质量评估与学生专注度分析提供了高效、智能的解
2025-12-04 20:32:57
1470
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离花生种子霉变识别检测系统(DeepSeek智能分析+web交互界面)
本项目旨在开发一个基于深度学习与Web技术的前后端分离式花生种子霉变智能识别与检测系统。系统核心采用先进的YOLOv8/v10/v11/v12系列目标检测模型,对花生种子图像进行高效、精准的二分分类(‘with mold’ 霉变 / ‘without mold’ 正常)。后端使用SpringBoot框架构建RESTful API,前端提供友好的Web交互界面,实现了用户管理、多模态检测(图像、视频、实时摄像头)、AI分析结果可视化与数据管理等功能。创新性地集成DeepSeek智能分析以增强检测能力,并将所有
2025-12-04 20:32:10
1013
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离香蕉成熟度识别检测系统(DeepSeek智能分析+web交互界面)
本项目旨在设计并实现一个基于深度学习与Web技术的香蕉成熟度智能识别与检测系统。系统核心采用前沿的YOLO系列目标检测模型(包括YOLOv8, v10, v11, v12),实现对香蕉图像的快速、精准成熟度分类。后端使用SpringBoot框架构建RESTful API,前端与后端分离,提供友好的Web交互界面。系统集成了用户认证、多模型切换、多种检测模式(图像、视频、实时摄像头)、检测记录管理、数据可视化以及管理员后台等完整功能。通过结合DeepSeek等AI分析能力,该系统不仅是一个高效的计算机视觉应用
2025-12-04 20:30:17
1005
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离疲劳驾驶识别检测系统(DeepSeek智能分析+web交互界面)
传统的疲劳检测方法多依赖于接触式传感器(如脑电图、心电图),这些方法不仅侵扰驾驶员,且成本高昂,难以在实际驾驶场景中大规模应用。近年来,随着深度学习技术在计算机视觉领域的突破,基于人脸表情和行为分析的非接触式疲劳检测方案展现出巨大的潜力。本项目旨在利用最先进的YOLO系列目标检测模型,结合现代化的Web开发框架,设计并实现一个高效、稳定、用户友好的前后端分离疲劳驾驶识别检测系统。
2025-12-04 20:29:22
914
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离昆虫识别检测系统(DeepSeek智能分析+web交互界面)
为解决上述问题,我们设计并开发了这款 “基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离昆虫识别检测系统” 。本系统深度融合了前沿的深度学习目标检测技术与现代化的Web开发框架,旨在为用户提供一个高效、精准、易用且功能完备的智能昆虫识别与分析平台。
2025-12-04 20:27:40
1001
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离杂草识别检测系统(DeepSeek智能分析+web交互界面)
本系统是一个深度融合了当代最前沿的深度学习目标检测技术、大语言模型分析能力与现代企业级Web开发框架的综合型智能应用平台。系统以高性能、可迭代的YOLO系列模型(涵盖v8, v10, v11, v12) 作为其核心的视觉感知引擎,专门用于对特定杂草物种—— 进行高精度、高效率的识别与定位。通过基于SpringBoot的鲁棒后端架构,系统构建了一套完整的用户认证、数据管理,并辅以清晰明了的响应式前端交互界面,最终为用户提供了一个集多模态检测、智能分析、数据可视化、记录管理与系统管理于一体的一站式杂草防控决策支
2025-12-04 20:25:57
668
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离口罩佩戴识别检测Web系统(DeepSeek智能分析)
DeepSeek智能分析 是一个集成了最新目标检测技术与现代化Web开发框架的高性能、可扩展的智能视觉分析平台。该系统核心致力于解决公共卫生场景下的口罩佩戴规范检测问题,通过先进的YOLO系列算法,实现了对图像、视频及实时摄像头流中人员是否佩戴口罩的精准、高效识别。系统采用前后端分离的架构设计,后端使用稳健的SpringBoot框架构建RESTful API,负责核心业务逻辑、用户管理与AI模型调度;前端则提供友好的用户交互界面,负责数据可视化与结果展示。结合MySQL数据库进行持久化存储,确保了用户数
2025-12-04 20:23:17
829
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离火灾检测Web系统(DeepSeek智能分析)
本文设计并实现了一套基于YOLOv8/v10/v11/v12算法与SpringBoot框架的前后端分离火灾检测Web系统。系统旨在通过深度学习技术,实现对火灾早期特征——火焰('fire')与烟雾('smoke')——的精准、实时识别。项目采用自建数据集,包含6,744张高质量标注图像(训练集4,832张、验证集1,000张、测试集912张),确保了模型的鲁棒性。系统核心提供了一个集用户管理、实时视频流检测、识别结果管理与可视化分析于一体的综合性Web平台,DeepSeek智能分析给出预防措施,有效解决了传
2025-12-04 20:20:24
960
原创 基于深度学习的皮肤病识别检测系统(web界面+YOLOv8/v10/v11/v12+DeepSeek智能分析 +前后端分离)
本论文介绍了一个基于深度学习的综合性皮肤病识别与检测系统,该系统集成了最新的YOLO系列目标检测算法、DeepSeek智能分析引擎和现代化的Web交互界面。系统实现了对七种常见皮肤病变的自动识别和分类,包括鲍温氏病、基底细胞癌、良性角化病变、皮肤纤维瘤、黑色素瘤、黑色素细胞痣和血管病变。通过构建前后端分离的架构,系统提供了用户友好的Web界面,支持图片、视频和实时摄像头检测等多种输入方式。系统采用MySQL数据库进行数据存储和管理,实现了用户认证、模型切换、检测记录管理和可视化分析等核心功能模块。实验结果表
2025-12-03 11:37:25
1124
原创 基于深度学习的施工现场安全检测系统(web界面+YOLOv8/v10/v11/v12+DeepSeek智能分析 +前后端分离)
本项目设计并实现了一个集成了前沿深度学习技术与现代化Web开发框架的施工现场安全智能检测与管理系统。系统核心采用最新的YOLO系列目标检测模型(包括YOLOv8, YOLOv10, YOLOv11, YOLOv12),构建了一个高精度、高效率的施工现场安全隐患实时识别引擎。通过引入DeepSeek大语言模型的智能分析能力,系统不仅能够识别目标,更能对复杂场景进行逻辑推理与风险描述,极大地提升了安全预警的智能化水平。系统前端采用Vue.js构建响应式用户界面,后端基于SpringBoot提供稳健的api
2025-11-27 11:47:41
716
原创 基于深度学习的裂缝检测系统(web界面+YOLOv8/v10/v11/v12+DeepSeek智能分析 +前后端分离)
本项目是一个基于先进深度学习技术构建的、功能全面且用户友好的裂缝智能检测系统。系统采用现代化的前后端分离架构,前端使用Vue.js构建响应式用户界面,后端采用SpringBoot框架提供稳健的API服务。核心检测算法集成了最新的YOLO系列模型(v8/v10/v11/v12),为用户提供了灵活且高性能的模型选择。此外,系统创新性地引入了DeepSeek大语言模型,为检测结果提供智能化的分析与解释,极大地提升了系统的实用价值。系统不仅支持图像、视频和摄像头实时流的全面检测模式,还配备了完善的用户管理、数据可视
2025-11-26 11:37:17
1113
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离学生课堂行为识别检测系统(DeepSeek智能分析+web交互界面)
本项目旨在研发一个基于先进YOLO系列目标检测算法(YOLOv8/v10/v11/v12)与SpringBoot框架的前后端分离式学生课堂行为智能识别与分析系统。系统通过深度学习技术,自动识别学生在课堂上的多种典型行为,如举手、阅读、书写、使用手机、低头、趴桌等。系统提供Web交互界面,支持用户管理、多种检测模式(图像、视频、实时摄像头)、模型动态切换、数据可视化以及集成DeepSeek智能分析功能。所有识别记录与用户数据均持久化存储于MySQL数据库,为课堂教学质量评估与学生专注度分析提供了高效、智能的解
2025-11-15 20:01:21
986
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离花生种子霉变识别检测系统(DeepSeek智能分析+web交互界面)
本项目旨在开发一个基于深度学习与Web技术的前后端分离式花生种子霉变智能识别与检测系统。系统核心采用先进的YOLOv8/v10/v11/v12系列目标检测模型,对花生种子图像进行高效、精准的二分分类(‘with mold’ 霉变 / ‘without mold’ 正常)。后端使用SpringBoot框架构建RESTful API,前端提供友好的Web交互界面,实现了用户管理、多模态检测(图像、视频、实时摄像头)、AI分析结果可视化与数据管理等功能。创新性地集成DeepSeek智能分析以增强检测能力,并将所有
2025-11-13 22:43:43
834
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离香蕉成熟度识别检测系统(DeepSeek智能分析+web交互界面)
本项目旨在设计并实现一个基于深度学习与Web技术的香蕉成熟度智能识别与检测系统。系统核心采用前沿的YOLO系列目标检测模型(包括YOLOv8, v10, v11, v12),实现对香蕉图像的快速、精准成熟度分类。后端使用SpringBoot框架构建RESTful API,前端与后端分离,提供友好的Web交互界面。系统集成了用户认证、多模型切换、多种检测模式(图像、视频、实时摄像头)、检测记录管理、数据可视化以及管理员后台等完整功能。通过结合DeepSeek等AI分析能力,该系统不仅是一个高效的计算机视觉应用
2025-11-11 14:58:39
1374
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离疲劳驾驶识别检测系统(DeepSeek智能分析+web交互界面)
本项目旨在设计并实现一个基于YOLO系列深度学习模型与SpringBoot框架的前后端分离式疲劳驾驶识别检测系统。系统致力于通过非接触式视觉分析,解决道路交通安全中的关键隐患——疲劳驾驶。项目核心采用包括YOLOv8至v12在内的多种先进目标检测算法,对包含4个类别(闭眼、睁眼、打哈欠、非哈欠)、共计超过16,000张标注图像的数据集进行训练,以实现对驾驶员疲劳状态的精准、实时识别。
2025-11-11 10:19:23
1071
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离昆虫识别检测系统(DeepSeek智能分析+web交互界面)
系统核心采用了一系列先进的YOLO模型(涵盖YOLOv8至最新的YOLOv12),确保了检测算法在精度与速度上的前沿性。同时,我们创新性地集成了DeepSeek大语言模型的AI分析能力,使系统不仅能“识别”昆虫,更能“理解”和“解读”检测结果,提供专业的分析洞察。通过SpringBoot构建的后端API和响应式的前端界面,系统实现了用户管理、多模态检测(图像、视频、实时摄像头)、数据可视化与记录管理等全套功能,为农业技术人员、科研工作者及广大农户提供了一个强有力的数字化工具。
2025-11-05 09:46:36
948
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离杂草识别检测系统(DeepSeek智能分析+web交互界面)
本系统是一个深度融合了当代最前沿的深度学习目标检测技术、大语言模型分析能力与现代企业级Web开发框架的综合型智能应用平台。系统以高性能、可迭代的YOLO系列模型(涵盖v8, v10, v11, v12) 作为其核心的视觉感知引擎,专门用于对特定杂草物种—— 进行高精度、高效率的识别与定位。通过基于SpringBoot的鲁棒后端架构,系统构建了一套完整的用户认证、数据管理,并辅以清晰明了的响应式前端交互界面,最终为用户提供了一个集多模态检测、智能分析、数据可视化、记录管理与系统管理于一体的一站式杂草防控决策支
2025-11-03 10:08:12
1258
1
数学建模的29个通用模型及matlab解法.zip
2024-05-14
yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件
2024-05-09
Squeezed Edge YOLO:边缘设备上的板载对象检测
2024-04-11
奥地利自动驾驶深度学习视觉模型YOLO和DETR的首次定性观察
2024-04-11
使用YOLO从SDSS图像中检测到边缘低表面亮度星系候选星系
2024-04-11
yolo使用TomFormer及早准确检测番茄叶病
2024-04-11
YOLOv7无人机实时探测人体
2024-04-11
使用 YOLO 对牛栏编号进行分类
2024-04-11
使用 YOLOv7 和 ESRGAN 改进坑洼检测
2024-04-11
基于YOLO的动态序列匹配模型,实现高效的无覆盖图像隐写
2024-04-11
使用YOLO v7在磁共振成像中检测肾脏
2024-04-11
YOLO-CIANNA:在无线电数据中进行深度学习的星系检测 I. 一种受YOLO启发的新型源检测方法应用于SKAO SDC1
2024-04-11
具有混合注意力特征金字塔网络的YOLO算法,用于焊点缺陷检测
2024-04-11
DiffYOLO:通过YOLO和扩散模型进行抗噪声目标检测
2024-04-11
YOLO-Former:YOLO与ViT握手
2024-04-11
基于深度学习的综合感知与通信系统中的目标-用户关联
2024-04-11
使用基于YOLO的学习方法对农业进行实时目标检测和机器人操作
2024-04-11
YOLO-World:实时开放词汇对象检测
2024-04-11
基于YOLO的红外小目标检测范式
2024-04-11
深度学习 国际象棋游戏数据集
2024-07-31
Kolektor:表面缺陷数据集
2024-07-31
C++开发实用教程最好的
2024-03-14
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅