斌擎科技

已获得 Ultralytics YOLO 模型商用版权。非商业用途都可使用,包括可以用于大学生程序设计!

  • 博客(4435)
  • 资源 (222)
  • 问答 (1)
  • 收藏
  • 关注

原创 YOLOv8/v10/v11/v12 百大项目实战专栏目录

在众多目标检测算法中,YOLO(You Only Look Once) 凭借其卓越的速度与精度平衡,始终屹立于技术浪潮之巅。特别是Ultralytics公司推出的YOLOv8、以及未来可期的v10、v11、v12,以其更加友好的设计、更强大的性能和更灵活的部署方案,成为了开发者、研究员和工程师们实现视觉AI应用的首选框架。

2025-08-26 17:10:21 912

原创 YOLO项目环境配置教程

YOLO项目环境安装,环境配置,项目环境配置,python虚拟环境搭建

2024-10-16 22:49:28 6330

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离学生课堂行为识别检测系统(DeepSeek智能分析+web交互界面)

本项目旨在研发一个基于先进YOLO系列目标检测算法(YOLOv8/v10/v11/v12)与SpringBoot框架的前后端分离式学生课堂行为智能识别与分析系统。系统通过深度学习技术,自动识别学生在课堂上的多种典型行为,如举手、阅读、书写、使用手机、低头、趴桌等。系统提供Web交互界面,支持用户管理、多种检测模式(图像、视频、实时摄像头)、模型动态切换、数据可视化以及集成DeepSeek智能分析功能。所有识别记录与用户数据均持久化存储于MySQL数据库,为课堂教学质量评估与学生专注度分析提供了高效、智能的解

2025-11-15 20:01:21 702

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离花生种子霉变识别检测系统(DeepSeek智能分析+web交互界面)

本项目旨在开发一个基于深度学习与Web技术的前后端分离式花生种子霉变智能识别与检测系统。系统核心采用先进的YOLOv8/v10/v11/v12系列目标检测模型,对花生种子图像进行高效、精准的二分分类(‘with mold’ 霉变 / ‘without mold’ 正常)。后端使用SpringBoot框架构建RESTful API,前端提供友好的Web交互界面,实现了用户管理、多模态检测(图像、视频、实时摄像头)、AI分析结果可视化与数据管理等功能。创新性地集成DeepSeek智能分析以增强检测能力,并将所有

2025-11-13 22:43:43 706

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离香蕉成熟度识别检测系统(DeepSeek智能分析+web交互界面)

本项目旨在设计并实现一个基于深度学习与Web技术的香蕉成熟度智能识别与检测系统。系统核心采用前沿的YOLO系列目标检测模型(包括YOLOv8, v10, v11, v12),实现对香蕉图像的快速、精准成熟度分类。后端使用SpringBoot框架构建RESTful API,前端与后端分离,提供友好的Web交互界面。系统集成了用户认证、多模型切换、多种检测模式(图像、视频、实时摄像头)、检测记录管理、数据可视化以及管理员后台等完整功能。通过结合DeepSeek等AI分析能力,该系统不仅是一个高效的计算机视觉应用

2025-11-11 14:58:39 1169

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离疲劳驾驶识别检测系统(DeepSeek智能分析+web交互界面)

本项目旨在设计并实现一个基于YOLO系列深度学习模型与SpringBoot框架的前后端分离式疲劳驾驶识别检测系统。系统致力于通过非接触式视觉分析,解决道路交通安全中的关键隐患——疲劳驾驶。项目核心采用包括YOLOv8至v12在内的多种先进目标检测算法,对包含4个类别(闭眼、睁眼、打哈欠、非哈欠)、共计超过16,000张标注图像的数据集进行训练,以实现对驾驶员疲劳状态的精准、实时识别。

2025-11-11 10:19:23 893

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离昆虫识别检测系统(DeepSeek智能分析+web交互界面)

系统核心采用了一系列先进的YOLO模型(涵盖YOLOv8至最新的YOLOv12),确保了检测算法在精度与速度上的前沿性。同时,我们创新性地集成了DeepSeek大语言模型的AI分析能力,使系统不仅能“识别”昆虫,更能“理解”和“解读”检测结果,提供专业的分析洞察。通过SpringBoot构建的后端API和响应式的前端界面,系统实现了用户管理、多模态检测(图像、视频、实时摄像头)、数据可视化与记录管理等全套功能,为农业技术人员、科研工作者及广大农户提供了一个强有力的数字化工具。

2025-11-05 09:46:36 774

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离杂草识别检测系统(DeepSeek智能分析+web交互界面)

本系统是一个深度融合了当代最前沿的深度学习目标检测技术、大语言模型分析能力与现代企业级Web开发框架的综合型智能应用平台。系统以高性能、可迭代的YOLO系列模型(涵盖v8, v10, v11, v12) 作为其核心的视觉感知引擎,专门用于对特定杂草物种—— 进行高精度、高效率的识别与定位。通过基于SpringBoot的鲁棒后端架构,系统构建了一套完整的用户认证、数据管理,并辅以清晰明了的响应式前端交互界面,最终为用户提供了一个集多模态检测、智能分析、数据可视化、记录管理与系统管理于一体的一站式杂草防控决策支

2025-11-03 10:08:12 1030 1

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离口罩佩戴识别检测Web系统(DeepSeek智能分析)

口罩检测系统的突出特点在于其高度的灵活性与技术前瞻性。它不仅支持从YOLOv8到YOLOv12等多种版本的模型一键切换,允许用户根据不同的精度与速度需求选择最佳模型,还创新性地集成了DeepSeek大语言模型,为检测结果提供更智能、更人性化的分析描述,超越了传统的单纯框选与分类。从功能完整性来看,系统涵盖了从用户登录注册、个人中心管理,到多媒体文件(图片、视频、实时流)检测,再到检测记录管理与后台用户管理的全流程,并提供了丰富的数据可视化看板。同时,个性化的UI设置(如导航栏颜色更换)进一步提升了用户体验。

2025-10-31 22:34:30 928

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离火灾检测Web系统(DeepSeek智能分析)

本文设计并实现了一套基于YOLOv8/v10/v11/v12算法与SpringBoot框架的前后端分离火灾检测Web系统。系统旨在通过深度学习技术,实现对火灾早期特征——火焰('fire')与烟雾('smoke')——的精准、实时识别。项目采用自建数据集,包含6,744张高质量标注图像(训练集4,832张、验证集1,000张、测试集912张),确保了模型的鲁棒性。系统核心提供了一个集用户管理、实时视频流检测、识别结果管理与可视化分析于一体的综合性Web平台,DeepSeek智能分析给出预防措施,有效解决了传

2025-10-26 11:13:35 1538 1

原创 基于深度学习YOLOv11的吸烟识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本项目旨在开发一个基于YOLOv11架构的高精度、实时吸烟行为检测系统。系统通过对监控画面或图像进行端到端的分析,能够精准识别并定位五种关键目标:香烟(Cigarette)、人(Person)、烟雾(Smoke)、电子烟(Vape) 以及综合性的吸烟行为(smoking)。该模型在包含超过12,000张标注图像的数据集上进行了充分训练,展现出强大的特征学习与泛化能力。此类技术可广泛应用于安全生产监控、公共场所禁烟监管、智能安防等领域,为自动化违规行为识别提供有效的技术解决方案,助力实现智能化管理。

2025-10-18 09:45:50 988 1

原创 基于深度学习YOLOv12的犬种识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本项目旨在开发一个基于YOLOv12目标检测模型的犬种自动识别系统。系统能够实时地检测图像或视频中的犬只,并精准地识别出其所属的6种特定犬种,包括比格犬、斗牛犬、柯基犬、金毛寻回犬、哈士奇和博美犬。YOLOv12作为YOLO系列的最新迭代,以其卓越的检测速度与精度,为本系统提供了强大的技术基础,使其非常适合于宠物管理、智能安防、宠物丢失寻找以及图像内容自动化标注等实际应用场景。

2025-10-18 09:45:05 784

原创 基于深度学习YOLOv11的犬种识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

项目核心采用了先进的YOLOv11模型,该模型在速度和精度之间实现了优异的平衡,非常适合实际部署应用。系统经过一个总量为1257张图像的专业数据集进行训练与优化,最终在独立的测试集上达到了良好的性能指标,平均精度(mAP)和召回率(Recall)均表现优异。该成果可广泛应用于宠物智能管理、宠物社区应用、动物研究以及智能安防监控等领域,为自动化犬种识别提供了高效、可靠的技术解决方案。

2025-10-18 09:44:34 803

原创 基于深度学习YOLOv11的疲劳驾驶识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本项目基于YOLOv11目标检测算法,开发了一套用于实时监测驾驶员疲劳状态的智能系统。该系统能够通过车载摄像头实时捕捉驾驶员面部图像,并精准识别其处于“清醒”或“疲劳”状态。经过在自定义数据集上的充分训练与验证,模型表现出优异的性能,能够有效检测出闭眼、点头、瞌睡等关键疲劳特征。本系统的最终目标是作为高级驾驶辅助系统(ADAS)的核心模块,及时发出预警,从而显著降低因疲劳驾驶引发的交通事故风险,提升道路安全。

2025-10-18 09:44:01 664

原创 基于深度学习YOLOv12的疲劳驾驶识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本文介绍了一个基于YOLOv12目标检测算法的疲劳驾驶监测系统。该系统旨在通过实时分析驾驶员面部图像,自动识别其疲劳状态,分为“清醒”和“疲劳”两类,从而为驾驶安全提供有效的技术保障。YOLOv12作为最新的高性能检测模型,兼具速度快、精度高的优点,非常适合部署在车载设备或边缘计算终端上进行实时预警。实验结果表明,本系统在自建数据集上取得了良好的性能,能够有效区分驾驶员的疲劳状态,为预防因疲劳驾驶引发的交通事故提供了可靠的解决方案。

2025-10-18 09:43:30 357

原创 基于深度学习YOLOv12的骑手佩戴头盔检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本文介绍了一个基于先进目标检测模型YOLOv12的骑手佩戴头盔智能检测系统。该系统旨在对交通场景中的摩托车骑手进行实时、精准的检测与识别,核心功能包括:检测摩托车骑手(motorcyclist)、判断其是否按规定佩戴安全头盔(helmet),并同时识别其车辆牌照(license_plate)。该系统共检测3个目标类别,在自构建的数据集上进行了充分的训练与验证。实验结果表明,该系统能够有效应对复杂道路环境,具备高准确率和良好的鲁棒性,可广泛应用于交通执法、智慧城市管理和安全监控等领域,为提升道路交通安全水平提

2025-10-18 09:42:58 399

原创 基于深度学习YOLOv11的骑手佩戴头盔检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本文介绍了一个基于YOLOv11目标检测算法的骑手佩戴头盔智能检测系统。该系统旨在对道路交通场景中的摩托车骑手进行实时监测与识别,核心功能是准确检测并区分三类目标:佩戴头盔的骑手(helmet)、未佩戴头盔的骑手(motorcyclist) 以及摩托车车牌(license_plate)。该系统对于提升交通执法效率、促进骑手安全驾驶、降低交通事故伤亡率具有重要的实际应用价值。通过在一个精心构建的数据集上进行训练与验证,模型实现了较高的检测精度与鲁棒性,能够有效应对复杂道路环境下的检测挑战。

2025-10-18 09:42:26 925

原创 基于深度学习YOLOv12的吸烟识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本文介绍了一个基于先进目标检测算法YOLOv12构建的高精度吸烟行为检测系统。该系统旨在实时识别和定位多种与吸烟相关的目标,包括香烟(Cigarette)、人物(Person)、烟雾(Smoke)、电子烟(Vape)以及整体的吸烟行为(smoking)。通过精准检测这些细粒度目标,系统能够有效判断场景中是否存在吸烟行为,并可进一步分析行为的具体细节(如使用传统香烟还是电子烟)。本系统在构建的大规模、高质量数据集上进行训练与验证,该数据集包含超过12,000张标注图像,覆盖了多种复杂场景。实验结果表明,该系统

2025-10-18 09:41:52 621

原创 基于深度学习YOLOv11的火箭识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本项目基于前沿的YOLOv11目标检测算法,开发了一个高性能的火箭多部件检测系统。系统能够精准识别并定位火箭发射过程中的三个关键组成部分:发动机火焰(Engine Flames)、火箭箭体(Rocket Body) 以及Space。通过对大规模、高质量的自定义数据集进行充分训练,模型在复杂多变的场景下(如不同光照条件、天气、火箭姿态及发射阶段)均表现出优异的检测精度与鲁棒性。该系统可广泛应用于航天发射的实时监测、视频资料自动分析、飞行器状态评估及航天科普教育等领域,为航天活动提供自动化的视觉感知技术支持。

2025-10-18 09:41:17 815

原创 基于深度学习YOLOv12的火箭识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本项目旨在开发一个基于先进目标检测模型YOLOv12的火箭部件智能识别系统。该系统能够精准、实时地检测并识别图像或视频流中的三个关键类别:发动机火焰(Engine Flames)、火箭箭体(Rocket Body) 和(Space)。通过在大规模、高质量的数据集上进行训练与验证,该模型展现出强大的特征提取能力和优异的泛化性能,能够有效应对太空环境下目标尺度多变、背景复杂等挑战。本系统可广泛应用于航天发射监测、在轨航天器状态分析、太空碎片追踪等多个航天领域,为自动化、智能化的太空态势感知提供核心技术支持。

2025-10-18 09:40:46 745

原创 基于深度学习YOLOv11的船舶分类检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本项目基于先进的YOLOv11目标检测算法,开发了一套高效、精准的船舶图像分类与检测系统。该系统能够对输入图像或视频中的船舶目标进行实时定位(Bounding Box)并准确分类为五大特定类别:集装箱船(Container Ship)、邮轮(Cruise Ship)、军用船舶(Military Ship)、滚装船(RORO)以及油轮(Tanker)。YOLOv11作为YOLO系列的最新迭代,其在检测速度与精度上的优异平衡,使其非常适合于海事监控、港口管理、航运物流等对实时性要求较高的应用场景。本系统的成功构

2025-10-18 09:40:08 1097

原创 基于深度学习YOLOv12的固体垃圾废物识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本项目旨在开发一个基于前沿目标检测模型YOLOv12的固体废物自动识别系统。系统专注于对两种最常见的可回收物——瓶类(Bottle) 和 罐类(Cans) 进行高精度、实时的检测与定位。通过对包含近8000张图像的数据集进行模型训练与优化,该模型能够有效学习瓶罐类废物的视觉特征,为后续的自动化垃圾分类、回收流程提供核心的视觉感知能力,是推动智慧环保和城市垃圾智能化管理的关键技术实践。

2025-10-18 09:39:35 585

原创 基于深度学习YOLOv11的固体废物识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本研究基于先进的YOLOv11目标检测算法,开发了一套高效、准确的固体废物智能识别与检测系统。该系统专门针对可回收物中的两类关键目标——“瓶子”(Bottle)和“罐子”(Cans”)进行优化,旨在为智能垃圾分类、自动化回收分拣等环保应用提供核心技术支持。通过利用深度学习技术,该系统能够实时处理图像或视频流,快速定位并精确分类视野中的废物目标,显著提升了废物分拣的效率和自动化水平,对推动城市固体废物的资源化利用具有重要意义。

2025-10-18 09:39:11 984

原创 基于深度学习YOLOv12的船舶类型识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本项目基于先进的YOLOv12目标检测算法,开发了一套高性能的船舶图像分类与检测系统。该系统能够精准地识别和定位图像或视频流中的船舶,并将其自动分类为五大特定类别:集装箱船(Container Ship)、邮轮(Cruise Ship)、军用船舶(Military Ship)、滚装船(RORO) 和 油轮(Tanker)。YOLOv12作为YOLO系列的最新迭代,在检测速度与精度上实现了显著提升,使其非常适合于对实时性要求较高的海事监控、港口管理和航运分析等应用场景。本系统通过在海事领域专用数据集上进行充分

2025-10-18 09:37:55 631

原创 基于深度学习YOLOv12的汽车损坏识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本项目基于前沿的目标检测算法YOLOv12,开发了一套高性能的汽车损坏自动识别与检测系统。该系统以单类别(nc: 1)‘Car-Damage’为检测目标,能够精准地定位并识别车辆图像中的损坏区域,如剐蹭、凹陷、破裂等。系统核心在于将先进的YOLO架构与大规模、高质量的专项数据集相结合,通过端到端的训练,实现了对汽车损坏的快速、准确判断。该技术可广泛应用于保险定损、二手车评估、汽车维修智能导流等多个商业场景,旨在通过自动化检测替代传统依赖人工经验的流程,显著提升行业效率与评估的客观性,降低运营成本,是人工智能

2025-10-18 09:37:25 670

原创 基于深度学习YOLOv11的汽车损坏识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本项目基于前沿的YOLOv11目标检测架构,研发了一套高性能的汽车损坏智能识别与检测系统。该系统以精准识别和定位图像或视频中的车辆损伤区域为核心目标,专注于“Car-Damage”这一单一类别进行深度优化,能够有效应对各种复杂环境下的检测需求。通过集成深度学习与计算机视觉技术,该方案旨在为汽车保险快速定损、事故现场自动化勘查、以及二手车交易评估等实际应用场景,提供高效、可靠且可落地的智能化技术工具,显著提升相关行业的作业效率与准确性。

2025-10-18 09:36:53 886

原创 基于深度学习YOLOv12的蜜蜂识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

我们采用最新的YOLOv12模型进行训练,该模型在精度和速度上相比前代YOLO系列有显著提升,能够快速准确地从复杂自然背景中定位并识别出蜜蜂个体。最终训练所得的模型在测试集上达到了较高的平均精度(mAP)89.1%,展现出优异的性能。此外,本项目还开发了一个完整的用户交互界面(UI),集成了用户登录注册、图像/视频上传、实时检测,极大提升了系统的易用性和实用性。该系统为蜂群自动化监测提供了一套高效、可靠的端到端解决方案,具有良好的应用前景和推广价值。

2025-10-18 09:36:20 1021

原创 基于深度学习YOLOv11的蜜蜂识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本文设计并实现了一个基于深度学习目标检测算法YOLOv11的蜜蜂识别与检测系统。该系统旨在应对现代农业和生态研究中对于蜜蜂种群进行高效、自动化监测的需求。项目采用了一个大规模、高质量的定制蜜蜂图像数据集,该数据集包含总计8078张图像,其中训练集5640张、验证集1604张、测试集836张,所有图像均精细标注,仅包含‘bees’一个类别(nc: 1),确保了模型训练的专注度和准确性。

2025-10-18 09:35:45 870

原创 基于深度学习YOLOv12的数字字母识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本文设计并实现了一种基于YOLOv12深度学习模型的字母数字识别检测系统,该系统能够高效准确地检测并识别图像中的36类字符(包括数字0-9和字母A-Z)。系统采用YOLOv12作为核心检测框架,结合自定义的YOLO格式数据集进行训练和优化,训练集包含4245张图像,验证集1221张,测试集610张。此外,系统配备了用户友好的UI界面,支持登录注册功能。实验结果表明,该系统在测试集上表现出较高的检测精度和鲁棒性,能够满足实际场景中字母数字识别的需求。本文详细介绍了系统架构、数据集构建、模型训练及界面设计,并提

2025-10-18 09:35:04 952

原创 基于深度学习YOLOv11的字母数字识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本文提出了一种基于深度学习YOLOv11的字母数字识别检测系统,旨在实现高效、准确的字符检测与识别。该系统采用改进的YOLOv11算法,结合包含36类字母数字(0-9, A-Z)的YOLO格式数据集进行训练,数据集规模为训练集4245张、验证集1221张、测试集610张。系统设计包含用户友好的UI界面,支持登录注册功能,并通过Python实现完整的项目部署。实验结果表明,该系统在复杂场景下具有较高的检测精度与鲁棒性,可广泛应用于车牌识别、文档自动化处理等领域。本文详细介绍了算法优化、数据集构建、系统设计及性

2025-10-18 09:34:31 822

原创 基于深度学习YOLOv12的猫狗品种识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

项目构建了一个包含37个猫狗品种的大规模定制数据集(nc=37),共计13,983张标注图像。系统后端基于PyTorch深度学习框架进行模型训练与优化,前端则开发了用户友好的图形化界面(UI),集成了登录注册、图像上传、实时检测、结果可视化。实验结果表明,最终训练所得的模型在独立测试集上达到了优异的平均精度(mAP)95.1%,验证了该系统在实际应用中的有效性与可靠性。本项目为宠物识别、智能安防、动物学研究等领域提供了一个功能完备的技术解决方案和工程实践参考。

2025-10-18 09:33:58 406

原创 基于深度学习YOLOv11的猫狗品种识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本文提出了一种基于深度学习YOLOv11的猫狗品种识别检测系统,该系统能够高效、准确地识别37种猫狗品种。通过构建包含13,983张图像的数据集(训练集12,879张、验证集736张、测试集368张),结合YOLOv11目标检测算法,实现了对复杂场景下多品种猫狗的实时检测与分类。系统采用Python开发,集成用户友好的UI界面,支持登录注册功能。实验结果表明,该系统在测试集上达到了较高的识别精度与鲁棒性,可为宠物管理、智能安防等领域提供技术支持。

2025-10-18 09:33:22 771

原创 基于深度学习YOLOv12的药物识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

药物识别在医疗安全和药品管理中具有重要意义。本文提出了一种基于深度学习YOLOv12的药物识别检测系统,能够高效准确地识别8类常见药物(包括Cipro 500、Ibuphil 600 mg等)以及不同颜色(蓝色、粉色、红色、白色)的药片。系统结合YOLOv12算法的高精度检测能力,并集成用户友好的UI界面和登录注册功能。实验结果表明,该系统在自定义YOLO数据集上表现优异,平均精度(mAP)98%达到较高水平,能够满足实际场景中对药物快速识别的需求。此外,系统提供了完整的Python项目源码和预训练模型,便

2025-10-17 15:14:24 656

原创 基于深度学习YOLOv11的药物识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

药物识别在医疗保健和药品管理中具有重要意义,但传统方法效率低且易出错。本文提出一种基于深度学习YOLOv11的药物识别检测系统,能够高效准确地识别8类常见药物(包括Cipro 500、Ibuphil 600 mg等)和颜色特征(红、蓝、粉、白)。系统结合YOLOv11算法的高性能检测能力,并集成用户友好的UI界面与登录注册功能。实验表明,该系统在自定义YOLO数据集上表现优异,平均精度(mAP)达98.6%以上,显著提升了药物识别的自动化水平。本项目的Python源码与预训练模型可为医疗智能化应用提供参考。

2025-10-17 15:13:50 877

原创 基于深度学习YOLOv12的工地运输车识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本文设计并实现了一种基于YOLOv12深度学习算法的工地运输车智能识别检测系统,旨在提升工地车辆管理的自动化水平与安全性。系统针对三类常见工程车辆(挖掘机、自卸卡车、轮式装载机)进行目标检测,采用包含2244张训练图像、267张验证图像和144张测试图像的YOLO格式数据集进行模型训练与评估。通过集成用户友好的UI界面及登录注册功能,满足实际工地场景的应用需求。实验结果表明,该系统在复杂工地环境下具有较高的检测精度与实时性,为工程车辆监控、作业调度及安全预警提供了有效的技术解决方案。

2025-10-17 15:13:20 677

原创 基于深度学习YOLOv11的工地运输车识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本文提出了一种基于深度学习YOLOv11的工地运输车智能识别检测系统,旨在实现对施工现场常见运输车辆(包括挖掘机、自卸卡车和轮式装载机)的高精度实时检测。系统采用改进的YOLOv11算法,结合YOLO格式数据集(包含训练集2244张、验证集267张和测试集144张图像)。此外,系统集成了用户友好的UI界面,支持登录注册功能。实验结果表明,该系统在测试集上达到了较高的检测准确率(mAP@0.5为93.2%),能够有效满足工地车辆智能化管理的需求。本文详细介绍了系统架构、算法实现及交互设计,并提供了完整的Pyt

2025-10-17 15:12:47 868

原创 基于深度学习YOLOv12的车辆类型识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本文基于YOLOv12深度学习框架,设计并实现了一个高效的车辆类型识别检测系统,支持对公交车(bus)、小汽车(car)、摩托车(motorbike)和卡车(truck)四类目标的实时检测。系统采用包含1000张标注图像的自建数据集(训练集750张、验证集100张、测试集150张),通过数据增强和迁移学习优化模型性能,平均精度(mAP)达到92.3%。此外,系统集成了用户友好的UI界面,包含登录注册功能。本文提供了完整的Python项目源码、预训练模型及部署方案,为智能交通领域的应用开发提供了参考。

2025-10-17 15:12:13 732

原创 基于深度学习YOLOv11的车辆类型识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本文提出了一种基于深度学习YOLOv11的车辆类型识别检测系统,能够高效准确地检测和分类四种常见车辆类型(公交车、小汽车、摩托车、卡车)。系统采用YOLOv11目标检测算法,结合YOLO格式的标注数据集进行训练和验证,实现了较高的检测精度和实时性能。此外,系统配备了用户友好的UI界面,支持登录和注册功能。实验结果表明,该系统在测试集上达到了良好的识别效果,可为智能交通管理、车辆监控等应用提供可靠的技术支持。

2025-10-17 15:11:48 969

原创 基于深度学习YOLOv12的安全锥识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本文基于YOLOv12深度学习框架,设计并实现了一套高效的安全锥识别检测系统。该系统通过集成YOLOv12算法、定制化的YOLO数据集(包含训练集5960张、验证集341张和测试集170张)以及用户友好的UI界面,实现了对安全锥目标的实时精准检测。系统还配备了登录注册功能。实验结果表明,该系统在准确率、召回率和实时性方面均表现出色,可广泛应用于道路施工、交通管理等领域,为安全防护提供智能化解决方案。

2025-10-17 15:10:06 792

原创 基于深度学习YOLOv11的安全锥识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

本文提出了一种基于深度学习的目标检测系统,采用YOLOv11算法实现安全锥的高效识别与检测。系统以YOLOv11为核心,结合包含5960张训练集、341张验证集和170张测试集的标注数据集进行模型训练与优化,实现了高精度的安全锥检测。此外,系统集成用户友好的UI界面,支持登录注册功能。实验结果表明,该系统在复杂环境下仍能保持较高的检测准确率和实时性,可广泛应用于道路施工、交通管理等领域。本文详细介绍了系统架构、数据集构建、模型训练及界面设计,并提供了完整的Python项目源码与预训练模型,为相关研究提供了可

2025-10-17 15:09:34 1004

数学建模的29个通用模型及matlab解法.zip

第01章 线性规划。 第02章 整数规划 第03章 非线性规划 第04章 动态规划 第05章 图与网络 第06章 排队论 第07章 对策论 第08章 层次分析法 第09章 插值与拟合 第10章 数据的统计描述和分析 第11章 方差分析 第12章 回归分析 第13章 微分方程建模 第14章 稳定状态模型 第15章 常微分方程的解法 第16章 差分方程模型 第17章 马氏链模型 第18章 变分法模型 第19章 神经网络模型 第20章 偏微分方程的数值解 第21章 目标规划 第22章 模糊数学模型 第23章 现代优化算法 第24章 时间序列模型 第25章 存贮论 第26章 经济与金融中的优化问题 第27章 生产与服务运作管理中的优化问题 第28章 灰色系统理论及其应用 第29章 多元分析 第30章 偏最小二乘回归

2024-05-14

第20章 偏微分方程的数值解.pdf

第20章 偏微分方程的数值解

2024-05-14

yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件

支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件 支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件 支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件 支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件

2024-05-09

Squeezed Edge YOLO:边缘设备上的板载对象检测

由于其在自主导航中的关键作用,对高效车载物体检测的需求正在增加。然而,由于 YOLO 等资源受限的边缘设备上的计算要求很高,因此在此类模型上部署此类检测模型具有挑战性。本文研究了一种名为Squeezed Edge YOLO的压缩目标检测模型。该模型被压缩和优化为千字节的参数,以适应此类边缘设备的板载。为了评估 Squeezed Edge YOLO,使用了两个用例 - 人体和形状检测 - 来展示模型的准确性和性能。此外,该模型还部署在具有 8 个 RISC-V 内核的 GAP8 处理器和具有 4GB 内存的 NVIDIA Jetson Nano 上。实验结果表明,Squeezed Edge YOLO模型尺寸优化了8倍,能效提高了76%,整个过程提高了3.3倍。

2024-04-11

奥地利自动驾驶深度学习视觉模型YOLO和DETR的首次定性观察

本研究探讨了单阶段和两阶段二维目标检测算法的应用,如你只看一次(YOLO)、实时设计模型(RT-DETR)算法在自动物体检测中的应用,以提高奥地利道路上自动驾驶的道路安全性。YOLO算法是一种最先进的实时物体检测系统,以其效率和准确性而闻名。在驾驶环境中,其快速识别和跟踪物体的潜力对于高级驾驶辅助系统(ADAS)和自动驾驶汽车至关重要。该研究的重点是奥地利的道路状况和交通情况带来的独特挑战。该国多样化的景观、不同的天气条件和特定的交通法规需要一种量身定制的方法来进行可靠的物体检测。该研究利用了一个选择性数据集,包括在奥地利道路上拍摄的图像和视频,包括城市、农村和高山环境。

2024-04-11

使用YOLO从SDSS图像中检测到边缘低表面亮度星系候选星系

低表面亮度星系(LSBG)是星系群中较暗的成员,被认为是众多的。然而,由于它们的表面亮度低,寻找广域LSBGs样本是困难的,这反过来又限制了我们充分了解星系的形成和演化以及星系关系的能力。边缘LSBG由于其独特的方向,为研究星系结构和星系成分提供了极好的机会。在这项工作中,我们利用You Only Look Once目标检测算法,通过在斯隆数字巡天(SDSS)中训练281个边缘LSBG来构建边缘LSBG检测模型gri-波段合成图像。该模型在测试集上的召回率为94.64%,纯度为95.38%。我们搜索了 938,046gri来自 SDSS 数据发布 16 的波段图像,发现了 52,293 个候选 LSBG。为了提高候选LSBG的纯度并减少污染,我们采用了深度支持向量数据描述算法来识别候选样品中的异常。最终,我们编制了一个包含 40,759 个边缘 LSBG 候选药物的目录。该样本与训练数据集具有相似的特征,主要由蓝色边缘的 LSBG 候选者组成。该目录可通过此 https URL 在线获取。

2024-04-11

yolo使用TomFormer及早准确检测番茄叶病

番茄叶病对番茄种植者构成了重大挑战,导致作物产量大幅下降。及时准确地识别番茄叶病对于成功实施病害管理策略至关重要。本文介绍了一种基于变压器的模型,称为TomFormer,用于番茄叶病检测。该论文的主要贡献包括以下几点:首先,我们提出了一种检测番茄叶病的新方法,即采用结合视觉转换器和卷积神经网络的融合模型。其次,我们的目标是将我们提出的方法应用于Hello Stretch机器人,以实现番茄叶病的实时诊断。第三,我们通过将我们的方法与 YOLOS、DETR、ViT 和 Swin 等模型进行比较来评估我们的方法,证明其能够实现最先进的结果。为了进行实验,我们使用了三个番茄叶病数据集,即 KUTomaDATA、PlantDoc 和 PlanVillage,其中 KUTomaDATA 是从阿联酋阿布扎比的一个温室收集的。最后,我们对模型的性能进行了全面分析,并彻底讨论了我们方法固有的局限性。TomFormer 在 KUTomaDATA、PlantDoc 和 PlantVillage 数据集上表现良好,平均准确率 (mAP) 得分分别为 87%、81% 和 83%。mAP的比较结果表明,我们的方法

2024-04-11

YOLOv7无人机实时探测人体

计算机视觉和遥感中最重要的问题之一是物体检测,它可以识别图片中不同事物的特定类别。公共安全的两个关键数据来源是无人驾驶飞行器(UAV)产生的热红外(TIR)遥感多场景照片和视频。由于目标尺度小,场景信息复杂,相对于可观看视频的分辨率较低,并且缺乏公开可用的标记数据集和训练模型,因此其目标检测过程仍然很困难。本研究提出了一种用于图片和视频的UAV TIR目标检测框架。用于收集地面TIR照片和视频的前视红外(FLIR)相机用于创建基于CNN架构的“你只看一次”(YOLO)模型。结果表明,在验证任务中,使用YOLOv7(YOLO版本7)最先进的模型\cite{1},检测人体的平均精度为IOU(Intersection over Union)= 0.5,为72.5%,而检测速度约为161帧/秒(FPS/秒)。该应用展示了YOLO架构的实用性,该应用根据YOLOv7模型从各种无人机的观察角度评估了无人机TIR视频中人员的交叉检测性能。本工作对使用深度学习模型的TIR图片和视频目标检测进行定性和定量评估得到了有利的支持。

2024-04-11

使用 YOLO 对牛栏编号进行分类

本文介绍了CowStallNumbers数据集,该数据集是从奶牛视频中提取的图像集合,旨在推进奶牛摊位数量检测领域。该数据集包括 1042 张训练图像和 261 张测试图像,摊位数范围为 0 到 60。为了增强数据集,我们对YOLO模型进行了微调,并应用了数据增强技术,包括随机裁剪、中心裁剪和随机旋转。实验结果表明,识别失速数的准确率为95.4%。

2024-04-11

使用 YOLOv7 和 ESRGAN 改进坑洼检测

坑洼是常见的道路危险,会对车辆造成损坏并给驾驶员带来安全风险。卷积神经网络(CNN)的引入在业界广泛用于基于深度学习方法的目标检测,并在硬件改进和软件实现方面取得了重大进展。在本文中,提出了一种独特的更好算法,以保证使用低分辨率相机或低分辨率图像和视频源,通过超分辨率生成对抗网络(SRGAN)使用超分辨率(SR)进行自动坑洼检测。然后,我们继续使用 You Only Look Once (YOLO) 网络(即 YOLOv7 网络)在低质量和高质量行车记录仪图像上建立基线坑洼检测性能。然后,我们说明并检查了在对低质量图像进行放大实施后,在基准之上获得的速度和准确性。

2024-04-11

基于YOLO的动态序列匹配模型,实现高效的无覆盖图像隐写

许多现有的无封面隐写术方法在封面图像和隐藏数据之间建立了映射关系。存在一个问题,即存储在数据库中的图像数量会随着隐写能力的增加而呈指数增长。对高隐写能力的需求使得构建图像数据库具有挑战性。为了提高隐写系统的图像库利用率和抗攻击能力,我们提出了一种基于动态匹配子串的高效无覆盖方案。YOLO用于选择最优对象,并在这些对象和加扰因子之间建立映射字典。借助该字典,每个图像都被有效地分配给特定的加扰因子,该因子用于加扰接收器的序列键。为了在有限的图像库中实现足够的隐写能力,加扰序列的所有子串都具有隐藏数据的潜力。完成秘密信息匹配后,将从数据库中获得理想数量的stego图像。实验结果表明,该技术在数据负载、传输安全性、隐藏能力等方面优于以往大多数工作。在典型的几何攻击下,它平均可以恢复79.85%的秘密信息。此外,只需要大约 200 个随机图像即可满足每个图像 19 位的容量。

2024-04-11

使用YOLO v7在磁共振成像中检测肾脏

简介 本研究探讨了使用最新的 You Only Look Once (YOLO V7) 物体检测方法,通过训练和测试医学图像格式上的改进 YOLO V7,来增强医学成像中的肾脏检测。方法 研究纳入878例肾细胞癌(RCC)不同亚型患者和206例肾脏正常患者。共检索到1084例患者的5657次MRI扫描。从回顾性维护的数据库中招募了 326 名患者,涉及 1034 个肿瘤,并在他们的肿瘤周围绘制了边界框。在 80% 的注释案例上训练了主要模型,其中 20% 用于测试(主要测试集)。然后使用最佳主要模型来识别其余 861 名患者的肿瘤,并使用该模型在他们的扫描中生成边界框坐标。创建了 10 个基准训练集,其中包含未分段患者的生成坐标。用于预测主要测试集中肾脏的最终模型。我们报告了阳性预测值(PPV)、灵敏度和平均精密度(mAP)。结果 初级训练集的平均PPV为0.94 +/- 0.01,灵敏度为0.87 +/- 0.04,mAP为0.91 +/- 0.02。最佳主要模型的 PPV 为 0.97,灵敏度为 0.92,mAP 为 0.95。最终模型的平均 PPV 为 0.95 +/- 0.03

2024-04-11

YOLO-CIANNA:在无线电数据中进行深度学习的星系检测 I. 一种受YOLO启发的新型源检测方法应用于SKAO SDC1

即将到来的平方公里阵列(SKA)将为天文仪器产生的数据量设定一个新标准,这可能会挑战广泛采用的数据分析工具,这些工具无法与数据大小进行充分扩展。本研究旨在通过应用现代深度学习目标检测技术,为海量射电天文数据集开发一种新的源检测和表征方法。这些方法已经证明了它们在复杂的计算机视觉任务中的效率,我们试图确定它们在应用于天文数据时的具体优势和劣势。我们介绍了YOLO-CIANNA,这是一款专为天文数据集设计的高度定制的深度学习目标探测器。本文介绍了该方法,并描述了解决射电天文图像特定挑战所需的所有低级适应。我们使用来自 SKAO SDC1 数据集的模拟 2D 连续体图像演示了这种方法的功能。我们的方法优于特定 SDC1 数据集上所有其他已发表的结果。使用 SDC1 指标,我们将挑战获胜分数提高了 +139\%,将唯一其他挑战后参与的分数提高了 +61\%。我们的目录的检测纯度为 94%,同时检测的来源比以前的最高分结果多 40 至 60%。经过训练的模型还可以强制在后处理中达到 99% 的纯度,并且仍然比其他高分方法多检测 10% 到 30% 的来源。它还能够实时检测,在单个 GPU 上每秒

2024-04-11

具有混合注意力特征金字塔网络的YOLO算法,用于焊点缺陷检测

传统的人工检测焊点缺陷在工业生产中不再适用,因为效率低、评估不一致、成本高、缺乏实时数据。针对工业场景表面贴装技术中焊点缺陷检测精度低、误检率高、计算成本高等问题,提出了一种新的方法。所提出的解决方案是专门为焊点缺陷检测算法设计的混合注意力机制,通过提高精度同时降低计算成本来改善制造过程中的质量控制。混合注意力机制包括一种增强的多头自注意力和协调注意力机制,增加了注意力网络感知上下文信息的能力,并增强了网络特征的利用范围。坐标注意力机制增强了不同通道之间的连接,减少了位置信息丢失。混合注意力机制增强了网络感知远距离位置信息和学习局部特征的能力。改进后的算法模型对焊点缺陷检测具有较好的检测能力,mAP达到91.5%,比“只看一次”第5版算法高4.3%,优于其他对比算法。与其他版本相比,平均平均精度、精度、召回率和每秒帧数指标也有所改进。在满足实时检测要求的同时,可以提高检测精度。

2024-04-11

DiffYOLO:通过YOLO和扩散模型进行抗噪声目标检测

以YOLO系列为代表的目标检测模型得到了广泛的应用,并在高质量的数据集上取得了很好的成绩,但并不是所有的工作条件都是理想的。为了解决在低质量数据集上定位目标的问题,现有方法要么训练新的目标检测网络,要么需要大量低质量数据集进行训练。然而,我们在本文中提出了一个框架,并将其应用于称为 DiffYOLO 的 YOLO 模型。具体来说,我们从去噪扩散概率模型中提取特征图,以增强训练有素的模型,这使我们能够在高质量数据集上微调YOLO,并在低质量数据集上进行测试。结果证明,该框架不仅可以证明在噪声数据集上的性能,还可以证明在高质量测试数据集上的检测结果。我们稍后将补充更多的实验(使用各种数据集和网络架构)。

2024-04-11

YOLO-Former:YOLO与ViT握手

所提出的YOLO-Former方法将Transformer和YOLOv4的思想无缝集成,创建了一个高精度、高效率的目标检测系统。该方法利用了 YOLOv4 的快速推理速度,并通过集成卷积注意力和 transformer 模块,融合了 transformer 架构的优势。结果验证了所提方法的有效性,在Pascal VOC数据集上的平均精度(mAP)为85.76\%,同时保持了较高的预测速度,帧速率为每秒10.85帧。这项工作的贡献在于展示了这两种最先进技术的创新组合如何导致目标检测领域的进一步改进。

2024-04-11

基于深度学习的综合感知与通信系统中的目标-用户关联

在集成传感和通信 (ISAC) 系统中,将雷达目标与通信用户设备 (UE) 相匹配可用于多种通信任务,例如主动切换和波束预测。在本文中,我们考虑了一种雷达辅助通信系统,其中基站(BS)配备了具有双重目标的多输入多输出(MIMO)雷达:(i)将车载雷达目标与通信波束空间中的车载设备(VE)相关联,以及(ii)根据雷达数据预测每个VE的波束成形矢量。建议的目标用户 (T2U) 关联包括两个阶段。首先,从距角图像中检测车辆雷达目标,并估计每个目标的波束成形矢量。然后,将推断出的每目标波束成形矢量与BS上用于通信的波束成形矢量进行匹配,以执行目标到用户(T2U)关联。通过修改“只看一次”(YOLO)模型,在模拟的距离角度雷达图像上进行训练,从而获得联合多目标检测和波束推理。不同城市车辆出行情景下的仿真结果表明,所提T2U方法提供了随BS天线阵列尺寸增加而增加的正确关联概率,突出了波束空间中VE可分离性的相应增加。此外,我们表明,改进后的YOLO架构可以有效地进行波束预测和雷达目标检测,在不同天线阵列尺寸下,后者的平均精度相似。

2024-04-11

使用基于YOLO的学习方法对农业进行实时目标检测和机器人操作

优化普通种植作物的作物收获过程对于农业产业化的目标具有重要意义。如今,机器视觉的利用使农作物的自动识别成为可能,从而提高了收割效率,但挑战仍然存在。本研究提出了一个新框架,该框架结合了卷积神经网络(CNN)的两个独立架构,以便在模拟环境中同时完成作物检测和收获(机器人操作)的任务。模拟环境中的裁剪图像会进行随机旋转、裁剪、亮度和对比度调整,以创建用于数据集生成的增强图像。“你只看一次”算法框架与传统的矩形边界框一起使用,用于作物定位。随后,所提出的方法通过视觉几何组模型利用获取的图像数据,以揭示机器人操作的抓取位置。

2024-04-11

YOLO-World:实时开放词汇对象检测

You Only Look Once (YOLO) 系列探测器已成为高效实用的工具。但是,它们对预定义和训练对象类别的依赖限制了它们在开放场景中的适用性。为了解决这一局限性,我们引入了 YOLO-World,这是一种创新方法,通过视觉语言建模和大规模数据集的预训练,增强了 YOLO 的开放词汇检测功能。具体而言,我们提出了一种新的可重新参数化的视觉-语言路径聚合网络(RepVL-PAN)和区域-文本对比损失,以促进视觉和语言信息之间的交互。我们的方法擅长以零射程、高效率检测各种物体。在具有挑战性的 LVIS 数据集上,YOLO-World 在 V100 上以 52.0 FPS 实现了 35.4 AP,在准确性和速度方面都优于许多最先进的方法。此外,经过微调的 YOLO-World 在多个下游任务上取得了出色的性能,包括对象检测和开放词汇实例分割。

2024-04-11

基于YOLO的红外小目标检测范式

在计算机视觉中,检测红外图像中从小到小的目标是一项具有挑战性的任务,尤其是在将这些目标与嘈杂或有纹理的背景区分开来时。与分割神经网络相比,YOLO 等传统目标检测方法难以检测微小目标,导致检测小目标时性能较弱。为了在保持高检测率的同时减少误报的数量,我们引入了反之亦然YOLO检测器训练的决策标准。后者利用了出乎意料的小目标,以区分他们与复杂背景。将这一统计标准添加到YOLOv7-tine中,弥合了用于红外小目标检测和目标检测网络的最先进的分割方法之间的性能差距。它还显著提高了YOLO在少镜头设置下的鲁棒性。

2024-04-11

深度学习 国际象棋游戏数据集

数据集介绍 数据介绍 这是从Lichess.org网站上的精选用户那里收集的20,000多个游戏的集合,以及如何收集更多游戏。将来,我还会收集更多游戏。 内容范围 游戏编号; 额定(T / F); 开始时间; 时间结束; 转弯数量; 游戏状态; 优胜者; 时间增量; 白色玩家编号; 白人球员等级; 黑人玩家ID; 黑人球员等级; 标准象棋符号的所有动作; 开放的生态(任何给定开口的标准化代码,在此处列出); 开幕名称; 开启层(开启阶段的移动次数) 探索方向 单个国际象棋游戏中包含许多信息,更不用说多个游戏的完整数据集了。它主要是一种模式游戏,而数据科学就是要检测数据模式,这就是为什么国际象棋是过去在AI领域投入最多的原因之一。该数据集收集了20,000个游戏中可用的所有信息,并以易于处理的格式进行了分析,例如,分析了允许玩家以黑白棋获胜的方式,多少元(游戏外)影响游戏的因素,黑白与空缺与胜利之间的关系等等。

2024-07-31

深度学习行人检测数据集

行人检测的图片,内置10000张行人图像,1000张骑自行车图像,1000张骑车图像。

2024-07-31

Kolektor:表面缺陷数据集

该数据集是Kolektor Group收集并标注的电子换向器缺陷数据集。数据集中包含了50种编写的电子换向器,每种有8张图片以及其语义分割的label。图像的大小为500×1240像素。 数据集介绍 该数据集是Kolektor Group收集并标注的电子换向器缺陷数据集。数据集中包含了50种编写的电子换向器,每种有8张图片以及其语义分割的label。图像的大小为500×1240像素。 数据集包括: 399幅图片:52幅可见缺陷图像、347幅图像无任何缺陷 尺寸的原始图像:宽度:500 px,高度:1240至1270 px 对于训练和评估,图像应该调整到512 x 1408 px。 对于每个项目,缺陷仅在至少一个图像中可见,而两个项目在两个图像上有缺陷,这意味着有52个图像中的缺陷是可见的。其余347幅图像作为无缺陷表面的负面例子.

2024-07-31

第14章 稳定状态模型.pdf

第14章 稳定状态模型

2024-05-14

第05章 图与网络.pdf

第05章 图与网络

2024-05-14

第21章 目标规划.pdf

第21章 目标规划

2024-05-14

第28章 灰色系统理论及其应用.pdf

第28章 灰色系统理论及其应用

2024-05-14

第06章 排队论.pdf

第06章 排队论

2024-05-14

第16章 差分方程模型.pdf

第16章 差分方程模型

2024-05-14

第07章 对策论.pdf

第07章 对策论

2024-05-14

第19章 神经网络模型.pdf

第19章 神经网络模型

2024-05-14

第23章 现代优化算法.pdf

第23章 现代优化算法

2024-05-14

第09章 插值与拟合.pdf

第09章 插值与拟合

2024-05-14

第08章 层次分析法.pdf

第08章 层次分析法

2024-05-14

第12章 回归分析.pdf

第12章 回归分析

2024-05-14

第13章 微分方程建模.pdf

第13章 微分方程建模

2024-05-14

第30章 偏最小二乘回归.pdf

第30章 偏最小二乘回归

2024-05-14

第11章 方差分析.pdf

第11章 方差分析

2024-05-14

第25章 存贮论.pdf

第25章 存贮论

2024-05-14

第04章 动态规划.pdf

第04章 动态规划

2024-05-14

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除