斌擎科技

已获得 Ultralytics YOLO 模型商用版权。可以用于公司成果展示、创新创业、程序设计和毕业设计等用途。

  • 博客(4541)
  • 资源 (10)
  • 收藏
  • 关注

原创 YOLOv8/v10/v11/v12 百大项目实战专栏目录

在众多目标检测算法中,YOLO(You Only Look Once) 凭借其卓越的速度与精度平衡,始终屹立于技术浪潮之巅。特别是Ultralytics公司推出的YOLOv8、以及未来可期的v10、v11、v12,以其更加友好的设计、更强大的性能和更灵活的部署方案,成为了开发者、研究员和工程师们实现视觉AI应用的首选框架。

2025-08-26 17:10:21 1148 1

原创 YOLO项目环境配置教程

YOLO项目环境安装,环境配置,项目环境配置,python虚拟环境搭建

2024-10-16 22:49:28 7482

原创 基于YOLOv8/YOLOv10/YOLOv11/YOLOv12与SpringBoot的前后端分离香蕉成熟度识别检测系统(DeepSeek智能分析+web交互界面)

本项目旨在设计并实现一个基于深度学习与Web技术的香蕉成熟度智能识别与检测系统。系统核心采用前沿的YOLO系列目标检测模型(包括YOLOv8, v10, v11, v12),实现对香蕉图像的快速、精准成熟度分类。后端使用SpringBoot框架构建RESTful API,前端与后端分离,提供友好的Web交互界面。系统集成了用户认证、多模型切换、多种检测模式(图像、视频、实时摄像头)、检测记录管理、数据可视化以及管理员后台等完整功能。通过结合DeepSeek等AI分析能力,该系统不仅是一个高效的计算机视觉应用

2025-12-19 15:26:56 857

原创 基于YOLOv8/YOLOv10/YOLOv11/YOLOv12与SpringBoot的前后端分离花生种子霉变识别检测系统(DeepSeek智能分析+web交互界面)

本项目旨在开发一个基于深度学习与Web技术的前后端分离式花生种子霉变智能识别与检测系统。系统核心采用先进的YOLOv8/v10/v11/v12系列目标检测模型,对花生种子图像进行高效、精准的二分分类(‘with mold’ 霉变 / ‘without mold’ 正常)。后端使用SpringBoot框架构建RESTful API,前端提供友好的Web交互界面,实现了用户管理、多模态检测(图像、视频、实时摄像头)、AI分析结果可视化与数据管理等功能。创新性地集成DeepSeek智能分析以增强检测能力,并将所有

2025-12-19 15:24:50 821

原创 基于YOLOv8/YOLOv10/YOLOv11/YOLOv12与SpringBoot的前后端分离学生课堂行为识别检测系统(DeepSeek智能分析+web交互界面)

本项目旨在研发一个基于先进YOLO系列目标检测算法(YOLOv8/v10/v11/v12)与SpringBoot框架的前后端分离式学生课堂行为智能识别与分析系统。系统通过深度学习技术,自动识别学生在课堂上的多种典型行为,如举手、阅读、书写、使用手机、低头、趴桌等。系统提供Web交互界面,支持用户管理、多种检测模式(图像、视频、实时摄像头)、模型动态切换、数据可视化以及集成DeepSeek智能分析功能。所有识别记录与用户数据均持久化存储于MySQL数据库,为课堂教学质量评估与学生专注度分析提供了高效、智能的解

2025-12-19 15:23:25 691

原创 基于深度学习的裂缝检测系统(web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)

本项目是一个基于先进深度学习技术构建的、功能全面且用户友好的裂缝智能检测系统。系统采用现代化的前后端分离架构,前端使用Vue.js构建响应式用户界面,后端采用SpringBoot框架提供稳健的API服务。核心检测算法集成了最新的YOLO系列模型(v8/v10/v11/v12),为用户提供了灵活且高性能的模型选择。此外,系统创新性地引入了DeepSeek大语言模型,为检测结果提供智能化的分析与解释,极大地提升了系统的实用价值。系统不仅支持图像、视频和摄像头实时流的全面检测模式,还配备了完善的用户管理、数据可视

2025-12-19 15:22:25 1260

原创 基于深度学习的施工现场安全检测系统(web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)

本项目设计并实现了一个集成了前沿深度学习技术与现代化Web开发框架的施工现场安全智能检测与管理系统。系统核心采用最新的YOLO系列目标检测模型(包括YOLOv8, YOLOv10, YOLOv11, YOLOv12),构建了一个高精度、高效率的施工现场安全隐患实时识别引擎。通过引入DeepSeek大语言模型的智能分析能力,系统不仅能够识别目标,更能对复杂场景进行逻辑推理与风险描述,极大地提升了安全预警的智能化水平。系统前端采用Vue.js构建响应式用户界面,后端基于SpringBoot提供稳健的RESTfu

2025-12-19 15:20:18 1058

原创 基于深度学习的皮肤病识别检测系统(web界面+YOLOv8/v10/v11/v12+DeepSeek智能分析 +前后端分离)

本论文介绍了一个基于深度学习的综合性皮肤病识别与检测系统,该系统集成了最新的YOLO系列目标检测算法、DeepSeek智能分析引擎和现代化的Web交互界面。系统实现了对七种常见皮肤病变的自动识别和分类,包括鲍温氏病、基底细胞癌、良性角化病变、皮肤纤维瘤、黑色素瘤、黑色素细胞痣和血管病变。通过构建前后端分离的架构,系统提供了用户友好的Web界面,支持图片、视频和实时摄像头检测等多种输入方式。系统采用MySQL数据库进行数据存储和管理,实现了用户认证、模型切换、检测记录管理和可视化分析等核心功能模块。实验结果表

2025-12-19 15:18:49 802

原创 基于深度学习的无人机识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)

本项目旨在设计并实现一个高效、精准、用户友好的无人机自动识别与综合管理系统。系统核心采用当前最前沿的YOLOv8/YOLOv10/YOLOv11/YOLOv12目标检测算法,构建了一个高性能的无人机检测模型。项目创新性地集成了DeepSeek大型语言模型的智能分析能力,赋予系统对检测结果的语义理解和生成式描述功能。系统架构采用前后端分离的现代化设计模式,后端使用Spring Boot等框架构建稳健的API服务,前端采用Vue.js构建响应式、高交互的Web界面,确保了良好的可维护性和扩展性。系统功能全面,不

2025-12-19 15:17:30 945

原创 基于深度学习的车辆类型识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)

本文详细阐述了一个集成了先进深度学习目标检测算法与现代化Web交互界面的智能车辆类型识别检测系统的设计与实现。该系统以多版本YOLO系列模型(包括最新的YOLOv8, YOLOv10, YOLOv11, YOLOv12)为核心检测引擎,构建了一个功能完备、前后端分离的Web应用平台。系统不仅实现了对图片、视频及摄像头实时流的精准车辆检测与12类精细车型分类,还创新性地整合了DeepSeek大语言模型的AI智能分析功能,为检测结果提供语义化描述与深入洞察。后端采用稳健的MySQL数据库对用户信息、检测记录及模

2025-12-19 15:16:46 878

原创 基于深度学习的晶圆体缺陷识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)

本文提出了一种基于深度学习技术的晶圆体缺陷识别检测系统,该系统集成了当前最先进的YOLO系列目标检测算法(包括YOLOv8、YOLOv10、YOLOv11和YOLOv12),并创新性地融入了DeepSeek智能分析模块。系统采用前后端分离的现代化Web架构,具备完善的用户管理、多模态检测(图像、视频、实时摄像头)、数据可视化和智能分析功能。通过优化的深度学习模型和精心设计的用户界面,本系统能够准确识别9类晶圆缺陷,包括中心缺陷、环形缺陷、边缘定位缺陷等,在半导体制造质量控制领域展现出显著的实用价值。实验结果

2025-12-19 15:15:28 703

原创 基于深度学习的老师课堂行为识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)

本文介绍了一个集成了最新计算机视觉技术与现代Web开发框架的综合性教师课堂行为识别与分析系统。该系统旨在通过非侵入式手段,自动识别和记录教师在课堂教学中的关键行为模式,为教学评估、教师专业发展与教育研究提供客观、量化的数据支持。系统的核心采用以YOLOv8为基准,并兼容至前沿的YOLOv12系列模型的目标检测算法,确保了对“翘腿”、“指导学生”、“看屏幕”、“讲授/提问”、“使用手机”、“书写”等六类典型课堂行为的高精度、实时识别。创新性地,系统集成了DeepSeek大型语言模型的智能分析功能,能够对检测结

2025-12-19 15:13:58 911

原创 基于深度学习的安全帽佩戴识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)

本文详细介绍了一套功能完整、技术先进的“基于深度学习的安全帽佩戴识别检测系统”。该系统旨在解决工业生产、建筑工地、电力巡检等高风险场景下的人员安全监管难题。系统核心采用当下最前沿的YOLO系列目标检测模型(集成YOLOv8、YOLOv10、YOLOv11及YOLOv12),实现了对“安全帽”(helmet)和“头部”(head,即未佩戴安全帽)两类目标的高精度、实时检测。项目不仅构建了强大的算法后端,还创新性地开发了现代化的Web应用界面,采用前后端分离架构,确保了系统的可维护性与可扩展性。系统功能全面,支

2025-12-19 15:11:44 649

原创 基于深度学习的人脸表情识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)

本研究设计并实现了一套高效、可扩展且用户友好的实时人脸表情识别系统。系统核心采用最前沿的深度学习目标检测架构——YOLO系列模型(支持YOLOv8至YOLOv12的动态切换),在包含‘愤怒’、‘厌恶’、‘恐惧’、‘快乐’、‘中性’、‘悲伤’、‘惊讶’七类表情的自有数据集上进行训练与优化。为实现便捷的交互与高效的管理,本系统创新性地构建了前后端分离的现代化Web应用:前端基于Vue.js框架提供直观的图形界面,后端业务逻辑由Spring Boot框架处理,而核心检测服务则通过Python实现,确保了算法性能与

2025-12-19 15:08:41 642

原创 基于深度学习的人脸表情识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)

本研究设计并实现了一套高效、可扩展且用户友好的实时人脸表情识别系统。系统核心采用最前沿的深度学习目标检测架构——YOLO系列模型(支持YOLOv8至YOLOv12的动态切换),在包含‘愤怒’、‘厌恶’、‘恐惧’、‘快乐’、‘中性’、‘悲伤’、‘惊讶’七类表情的自有数据集上进行训练与优化。为实现便捷的交互与高效的管理,本系统创新性地构建了前后端分离的现代化Web应用:前端基于Vue.js框架提供直观的图形界面,后端业务逻辑由Spring Boot框架处理,而核心检测服务则通过Python实现,确保了算法性能与

2025-12-16 15:27:54 1021 2

原创 基于深度学习的安全帽佩戴识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)

本文详细介绍了一套功能完整、技术先进的“基于深度学习的安全帽佩戴识别检测系统”。该系统旨在解决工业生产、建筑工地、电力巡检等高风险场景下的人员安全监管难题。系统核心采用当下最前沿的YOLO系列目标检测模型(集成YOLOv8、YOLOv10、YOLOv11及YOLOv12),实现了对“安全帽”(helmet)和“头部”(head,即未佩戴安全帽)两类目标的高精度、实时检测。项目不仅构建了强大的算法后端,还创新性地开发了现代化的Web应用界面,采用前后端分离架构,确保了系统的可维护性与可扩展性。系统功能全面,支

2025-12-06 15:24:55 712

原创 基于深度学习的老师课堂行为识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)

本文介绍了一个集成了最新计算机视觉技术与现代Web开发框架的综合性教师课堂行为识别与分析系统。该系统旨在通过非侵入式手段,自动识别和记录教师在课堂教学中的关键行为模式,为教学评估、教师专业发展与教育研究提供客观、量化的数据支持。系统的核心采用以YOLOv8为基准,并兼容至前沿的YOLOv12系列模型的目标检测算法,确保了对“翘腿”、“指导学生”、“看屏幕”、“讲授/提问”、“使用手机”、“书写”等六类典型课堂行为的高精度、实时识别。创新性地,系统集成了DeepSeek大型语言模型的智能分析功能,能够对检测结

2025-12-05 17:29:08 688

原创 基于深度学习的晶圆体缺陷识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)

本文提出了一种基于深度学习技术的晶圆体缺陷识别检测系统,该系统集成了当前最先进的YOLO系列目标检测算法(包括YOLOv8、YOLOv10、YOLOv11和YOLOv12),并创新性地融入了DeepSeek智能分析模块。系统采用前后端分离的现代化Web架构,具备完善的用户管理、多模态检测(图像、视频、实时摄像头)、数据可视化和智能分析功能。通过优化的深度学习模型和精心设计的用户界面,本系统能够准确识别9类晶圆缺陷,包括中心缺陷、环形缺陷、边缘定位缺陷等,在半导体制造质量控制领域展现出显著的实用价值。实验结果

2025-12-05 16:24:04 1030

原创 基于深度学习的车辆类型识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)

本文详细阐述了一个集成了先进深度学习目标检测算法与现代化Web交互界面的智能车辆类型识别检测系统的设计与实现。该系统以多版本YOLO系列模型(包括最新的YOLOv8, YOLOv10, YOLOv11, YOLOv12)为核心检测引擎,构建了一个功能完备、前后端分离的Web应用平台。系统不仅实现了对图片、视频及摄像头实时流的精准车辆检测与12类精细车型分类,还创新性地整合了DeepSeek大语言模型的AI智能分析功能,为检测结果提供语义化描述与深入洞察。后端采用稳健的MySQL数据库对用户信息、检测记录及模

2025-12-05 14:52:51 946

原创 基于深度学习的无人机识别检测系统(最新web界面+YOLOv8/YOLOv10/YOLOv11/YOLOv12+DeepSeek智能分析 +前后端分离)

本项目旨在设计并实现一个高效、精准、用户友好的无人机自动识别与综合管理系统。系统核心采用当前最前沿的YOLOv8/YOLOv10/YOLOv11/YOLOv12目标检测算法,构建了一个高性能的无人机检测模型。项目创新性地集成了DeepSeek大型语言模型的智能分析能力,赋予系统对检测结果的语义理解和生成式描述功能。系统架构采用前后端分离的现代化设计模式,后端使用Spring Boot等框架构建稳健的API服务,前端采用Vue.js构建响应式、高交互的Web界面,确保了良好的可维护性和扩展性。系统功能全面,不

2025-12-05 11:39:40 933

原创 基于深度学习的皮肤病识别检测系统(web界面+YOLOv8/v10/v11/v12+DeepSeek智能分析 +前后端分离)

本论文介绍了一个基于深度学习的综合性皮肤病识别与检测系统,该系统集成了最新的YOLO系列目标检测算法、DeepSeek智能分析引擎和现代化的Web交互界面。系统实现了对七种常见皮肤病变的自动识别和分类,包括鲍温氏病、基底细胞癌、良性角化病变、皮肤纤维瘤、黑色素瘤、黑色素细胞痣和血管病变。通过构建前后端分离的架构,系统提供了用户友好的Web界面,支持图片、视频和实时摄像头检测等多种输入方式。系统采用MySQL数据库进行数据存储和管理,实现了用户认证、模型切换、检测记录管理和可视化分析等核心功能模块。实验结果表

2025-12-04 20:35:24 628

原创 基于深度学习的施工现场安全检测系统(web界面+YOLOv8/v10/v11/v12+DeepSeek智能分析 +前后端分离)

本项目设计并实现了一个集成了前沿深度学习技术与现代化Web开发框架的施工现场安全智能检测与管理系统。系统核心采用最新的YOLO系列目标检测模型(包括YOLOv8, YOLOv10, YOLOv11, YOLOv12),构建了一个高精度、高效率的施工现场安全隐患实时识别引擎。通过引入DeepSeek大语言模型的智能分析能力,系统不仅能够识别目标,更能对复杂场景进行逻辑推理与风险描述,极大地提升了安全预警的智能化水平。系统前端采用Vue.js构建响应式用户界面,后端基于SpringBoot提供稳健的RESTfu

2025-12-04 20:34:40 613 1

原创 基于深度学习的裂缝检测系统(web界面+YOLOv8/v10/v11/v12+DeepSeek智能分析 +前后端分离)

本项目是一个基于先进深度学习技术构建的、功能全面且用户友好的裂缝智能检测系统。系统采用现代化的前后端分离架构,前端使用Vue.js构建响应式用户界面,后端采用SpringBoot框架提供稳健的API服务。核心检测算法集成了最新的YOLO系列模型(v8/v10/v11/v12),为用户提供了灵活且高性能的模型选择。此外,系统创新性地引入了DeepSeek大语言模型,为检测结果提供智能化的分析与解释,极大地提升了系统的实用价值。系统不仅支持图像、视频和摄像头实时流的全面检测模式,还配备了完善的用户管理、数据可视

2025-12-04 20:33:50 844

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离学生课堂行为识别检测系统(DeepSeek智能分析+web交互界面)

本项目旨在研发一个基于先进YOLO系列目标检测算法(YOLOv8/v10/v11/v12)与SpringBoot框架的前后端分离式学生课堂行为智能识别与分析系统。系统通过深度学习技术,自动识别学生在课堂上的多种典型行为,如举手、阅读、书写、使用手机、低头、趴桌等。系统提供Web交互界面,支持用户管理、多种检测模式(图像、视频、实时摄像头)、模型动态切换、数据可视化以及集成DeepSeek智能分析功能。所有识别记录与用户数据均持久化存储于MySQL数据库,为课堂教学质量评估与学生专注度分析提供了高效、智能的解

2025-12-04 20:32:57 1470

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离花生种子霉变识别检测系统(DeepSeek智能分析+web交互界面)

本项目旨在开发一个基于深度学习与Web技术的前后端分离式花生种子霉变智能识别与检测系统。系统核心采用先进的YOLOv8/v10/v11/v12系列目标检测模型,对花生种子图像进行高效、精准的二分分类(‘with mold’ 霉变 / ‘without mold’ 正常)。后端使用SpringBoot框架构建RESTful API,前端提供友好的Web交互界面,实现了用户管理、多模态检测(图像、视频、实时摄像头)、AI分析结果可视化与数据管理等功能。创新性地集成DeepSeek智能分析以增强检测能力,并将所有

2025-12-04 20:32:10 1013

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离香蕉成熟度识别检测系统(DeepSeek智能分析+web交互界面)

本项目旨在设计并实现一个基于深度学习与Web技术的香蕉成熟度智能识别与检测系统。系统核心采用前沿的YOLO系列目标检测模型(包括YOLOv8, v10, v11, v12),实现对香蕉图像的快速、精准成熟度分类。后端使用SpringBoot框架构建RESTful API,前端与后端分离,提供友好的Web交互界面。系统集成了用户认证、多模型切换、多种检测模式(图像、视频、实时摄像头)、检测记录管理、数据可视化以及管理员后台等完整功能。通过结合DeepSeek等AI分析能力,该系统不仅是一个高效的计算机视觉应用

2025-12-04 20:30:17 1005

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离疲劳驾驶识别检测系统(DeepSeek智能分析+web交互界面)

传统的疲劳检测方法多依赖于接触式传感器(如脑电图、心电图),这些方法不仅侵扰驾驶员,且成本高昂,难以在实际驾驶场景中大规模应用。近年来,随着深度学习技术在计算机视觉领域的突破,基于人脸表情和行为分析的非接触式疲劳检测方案展现出巨大的潜力。本项目旨在利用最先进的YOLO系列目标检测模型,结合现代化的Web开发框架,设计并实现一个高效、稳定、用户友好的前后端分离疲劳驾驶识别检测系统。

2025-12-04 20:29:22 914

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离昆虫识别检测系统(DeepSeek智能分析+web交互界面)

为解决上述问题,我们设计并开发了这款 “基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离昆虫识别检测系统” 。本系统深度融合了前沿的深度学习目标检测技术与现代化的Web开发框架,旨在为用户提供一个高效、精准、易用且功能完备的智能昆虫识别与分析平台。

2025-12-04 20:27:40 1001

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离杂草识别检测系统(DeepSeek智能分析+web交互界面)

本系统是一个深度融合了当代最前沿的深度学习目标检测技术、大语言模型分析能力与现代企业级Web开发框架的综合型智能应用平台。系统以高性能、可迭代的YOLO系列模型(涵盖v8, v10, v11, v12) 作为其核心的视觉感知引擎,专门用于对特定杂草物种—— 进行高精度、高效率的识别与定位。通过基于SpringBoot的鲁棒后端架构,系统构建了一套完整的用户认证、数据管理,并辅以清晰明了的响应式前端交互界面,最终为用户提供了一个集多模态检测、智能分析、数据可视化、记录管理与系统管理于一体的一站式杂草防控决策支

2025-12-04 20:25:57 668

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离口罩佩戴识别检测Web系统(DeepSeek智能分析)

DeepSeek智能分析 是一个集成了最新目标检测技术与现代化Web开发框架的高性能、可扩展的智能视觉分析平台。该系统核心致力于解决公共卫生场景下的口罩佩戴规范检测问题,通过先进的YOLO系列算法,实现了对图像、视频及实时摄像头流中人员是否佩戴口罩的精准、高效识别。系统采用前后端分离的架构设计,后端使用稳健的SpringBoot框架构建RESTful API,负责核心业务逻辑、用户管理与AI模型调度;前端则提供友好的用户交互界面,负责数据可视化与结果展示。结合MySQL数据库进行持久化存储,确保了用户数

2025-12-04 20:23:17 829

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离火灾检测Web系统(DeepSeek智能分析)

本文设计并实现了一套基于YOLOv8/v10/v11/v12算法与SpringBoot框架的前后端分离火灾检测Web系统。系统旨在通过深度学习技术,实现对火灾早期特征——火焰('fire')与烟雾('smoke')——的精准、实时识别。项目采用自建数据集,包含6,744张高质量标注图像(训练集4,832张、验证集1,000张、测试集912张),确保了模型的鲁棒性。系统核心提供了一个集用户管理、实时视频流检测、识别结果管理与可视化分析于一体的综合性Web平台,DeepSeek智能分析给出预防措施,有效解决了传

2025-12-04 20:20:24 960

原创 基于深度学习的皮肤病识别检测系统(web界面+YOLOv8/v10/v11/v12+DeepSeek智能分析 +前后端分离)

本论文介绍了一个基于深度学习的综合性皮肤病识别与检测系统,该系统集成了最新的YOLO系列目标检测算法、DeepSeek智能分析引擎和现代化的Web交互界面。系统实现了对七种常见皮肤病变的自动识别和分类,包括鲍温氏病、基底细胞癌、良性角化病变、皮肤纤维瘤、黑色素瘤、黑色素细胞痣和血管病变。通过构建前后端分离的架构,系统提供了用户友好的Web界面,支持图片、视频和实时摄像头检测等多种输入方式。系统采用MySQL数据库进行数据存储和管理,实现了用户认证、模型切换、检测记录管理和可视化分析等核心功能模块。实验结果表

2025-12-03 11:37:25 1124

原创 基于深度学习的施工现场安全检测系统(web界面+YOLOv8/v10/v11/v12+DeepSeek智能分析 +前后端分离)

本项目设计并实现了一个集成了前沿深度学习技术与现代化Web开发框架的施工现场安全智能检测与管理系统。系统核心采用最新的YOLO系列目标检测模型(包括YOLOv8, YOLOv10, YOLOv11, YOLOv12),构建了一个高精度、高效率的施工现场安全隐患实时识别引擎。通过引入DeepSeek大语言模型的智能分析能力,系统不仅能够识别目标,更能对复杂场景进行逻辑推理与风险描述,极大地提升了安全预警的智能化水平。系统前端采用Vue.js构建响应式用户界面,后端基于SpringBoot提供稳健的api

2025-11-27 11:47:41 716

原创 基于深度学习的裂缝检测系统(web界面+YOLOv8/v10/v11/v12+DeepSeek智能分析 +前后端分离)

本项目是一个基于先进深度学习技术构建的、功能全面且用户友好的裂缝智能检测系统。系统采用现代化的前后端分离架构,前端使用Vue.js构建响应式用户界面,后端采用SpringBoot框架提供稳健的API服务。核心检测算法集成了最新的YOLO系列模型(v8/v10/v11/v12),为用户提供了灵活且高性能的模型选择。此外,系统创新性地引入了DeepSeek大语言模型,为检测结果提供智能化的分析与解释,极大地提升了系统的实用价值。系统不仅支持图像、视频和摄像头实时流的全面检测模式,还配备了完善的用户管理、数据可视

2025-11-26 11:37:17 1113

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离学生课堂行为识别检测系统(DeepSeek智能分析+web交互界面)

本项目旨在研发一个基于先进YOLO系列目标检测算法(YOLOv8/v10/v11/v12)与SpringBoot框架的前后端分离式学生课堂行为智能识别与分析系统。系统通过深度学习技术,自动识别学生在课堂上的多种典型行为,如举手、阅读、书写、使用手机、低头、趴桌等。系统提供Web交互界面,支持用户管理、多种检测模式(图像、视频、实时摄像头)、模型动态切换、数据可视化以及集成DeepSeek智能分析功能。所有识别记录与用户数据均持久化存储于MySQL数据库,为课堂教学质量评估与学生专注度分析提供了高效、智能的解

2025-11-15 20:01:21 986

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离花生种子霉变识别检测系统(DeepSeek智能分析+web交互界面)

本项目旨在开发一个基于深度学习与Web技术的前后端分离式花生种子霉变智能识别与检测系统。系统核心采用先进的YOLOv8/v10/v11/v12系列目标检测模型,对花生种子图像进行高效、精准的二分分类(‘with mold’ 霉变 / ‘without mold’ 正常)。后端使用SpringBoot框架构建RESTful API,前端提供友好的Web交互界面,实现了用户管理、多模态检测(图像、视频、实时摄像头)、AI分析结果可视化与数据管理等功能。创新性地集成DeepSeek智能分析以增强检测能力,并将所有

2025-11-13 22:43:43 834

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离香蕉成熟度识别检测系统(DeepSeek智能分析+web交互界面)

本项目旨在设计并实现一个基于深度学习与Web技术的香蕉成熟度智能识别与检测系统。系统核心采用前沿的YOLO系列目标检测模型(包括YOLOv8, v10, v11, v12),实现对香蕉图像的快速、精准成熟度分类。后端使用SpringBoot框架构建RESTful API,前端与后端分离,提供友好的Web交互界面。系统集成了用户认证、多模型切换、多种检测模式(图像、视频、实时摄像头)、检测记录管理、数据可视化以及管理员后台等完整功能。通过结合DeepSeek等AI分析能力,该系统不仅是一个高效的计算机视觉应用

2025-11-11 14:58:39 1374

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离疲劳驾驶识别检测系统(DeepSeek智能分析+web交互界面)

本项目旨在设计并实现一个基于YOLO系列深度学习模型与SpringBoot框架的前后端分离式疲劳驾驶识别检测系统。系统致力于通过非接触式视觉分析,解决道路交通安全中的关键隐患——疲劳驾驶。项目核心采用包括YOLOv8至v12在内的多种先进目标检测算法,对包含4个类别(闭眼、睁眼、打哈欠、非哈欠)、共计超过16,000张标注图像的数据集进行训练,以实现对驾驶员疲劳状态的精准、实时识别。

2025-11-11 10:19:23 1071

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离昆虫识别检测系统(DeepSeek智能分析+web交互界面)

系统核心采用了一系列先进的YOLO模型(涵盖YOLOv8至最新的YOLOv12),确保了检测算法在精度与速度上的前沿性。同时,我们创新性地集成了DeepSeek大语言模型的AI分析能力,使系统不仅能“识别”昆虫,更能“理解”和“解读”检测结果,提供专业的分析洞察。通过SpringBoot构建的后端API和响应式的前端界面,系统实现了用户管理、多模态检测(图像、视频、实时摄像头)、数据可视化与记录管理等全套功能,为农业技术人员、科研工作者及广大农户提供了一个强有力的数字化工具。

2025-11-05 09:46:36 948

原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离杂草识别检测系统(DeepSeek智能分析+web交互界面)

本系统是一个深度融合了当代最前沿的深度学习目标检测技术、大语言模型分析能力与现代企业级Web开发框架的综合型智能应用平台。系统以高性能、可迭代的YOLO系列模型(涵盖v8, v10, v11, v12) 作为其核心的视觉感知引擎,专门用于对特定杂草物种—— 进行高精度、高效率的识别与定位。通过基于SpringBoot的鲁棒后端架构,系统构建了一套完整的用户认证、数据管理,并辅以清晰明了的响应式前端交互界面,最终为用户提供了一个集多模态检测、智能分析、数据可视化、记录管理与系统管理于一体的一站式杂草防控决策支

2025-11-03 10:08:12 1258 1

数学建模的29个通用模型及matlab解法.zip

第01章 线性规划。 第02章 整数规划 第03章 非线性规划 第04章 动态规划 第05章 图与网络 第06章 排队论 第07章 对策论 第08章 层次分析法 第09章 插值与拟合 第10章 数据的统计描述和分析 第11章 方差分析 第12章 回归分析 第13章 微分方程建模 第14章 稳定状态模型 第15章 常微分方程的解法 第16章 差分方程模型 第17章 马氏链模型 第18章 变分法模型 第19章 神经网络模型 第20章 偏微分方程的数值解 第21章 目标规划 第22章 模糊数学模型 第23章 现代优化算法 第24章 时间序列模型 第25章 存贮论 第26章 经济与金融中的优化问题 第27章 生产与服务运作管理中的优化问题 第28章 灰色系统理论及其应用 第29章 多元分析 第30章 偏最小二乘回归

2024-05-14

第20章 偏微分方程的数值解.pdf

第20章 偏微分方程的数值解

2024-05-14

yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件

支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件 支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件 支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件 支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件

2024-05-09

Squeezed Edge YOLO:边缘设备上的板载对象检测

由于其在自主导航中的关键作用,对高效车载物体检测的需求正在增加。然而,由于 YOLO 等资源受限的边缘设备上的计算要求很高,因此在此类模型上部署此类检测模型具有挑战性。本文研究了一种名为Squeezed Edge YOLO的压缩目标检测模型。该模型被压缩和优化为千字节的参数,以适应此类边缘设备的板载。为了评估 Squeezed Edge YOLO,使用了两个用例 - 人体和形状检测 - 来展示模型的准确性和性能。此外,该模型还部署在具有 8 个 RISC-V 内核的 GAP8 处理器和具有 4GB 内存的 NVIDIA Jetson Nano 上。实验结果表明,Squeezed Edge YOLO模型尺寸优化了8倍,能效提高了76%,整个过程提高了3.3倍。

2024-04-11

奥地利自动驾驶深度学习视觉模型YOLO和DETR的首次定性观察

本研究探讨了单阶段和两阶段二维目标检测算法的应用,如你只看一次(YOLO)、实时设计模型(RT-DETR)算法在自动物体检测中的应用,以提高奥地利道路上自动驾驶的道路安全性。YOLO算法是一种最先进的实时物体检测系统,以其效率和准确性而闻名。在驾驶环境中,其快速识别和跟踪物体的潜力对于高级驾驶辅助系统(ADAS)和自动驾驶汽车至关重要。该研究的重点是奥地利的道路状况和交通情况带来的独特挑战。该国多样化的景观、不同的天气条件和特定的交通法规需要一种量身定制的方法来进行可靠的物体检测。该研究利用了一个选择性数据集,包括在奥地利道路上拍摄的图像和视频,包括城市、农村和高山环境。

2024-04-11

使用YOLO从SDSS图像中检测到边缘低表面亮度星系候选星系

低表面亮度星系(LSBG)是星系群中较暗的成员,被认为是众多的。然而,由于它们的表面亮度低,寻找广域LSBGs样本是困难的,这反过来又限制了我们充分了解星系的形成和演化以及星系关系的能力。边缘LSBG由于其独特的方向,为研究星系结构和星系成分提供了极好的机会。在这项工作中,我们利用You Only Look Once目标检测算法,通过在斯隆数字巡天(SDSS)中训练281个边缘LSBG来构建边缘LSBG检测模型gri-波段合成图像。该模型在测试集上的召回率为94.64%,纯度为95.38%。我们搜索了 938,046gri来自 SDSS 数据发布 16 的波段图像,发现了 52,293 个候选 LSBG。为了提高候选LSBG的纯度并减少污染,我们采用了深度支持向量数据描述算法来识别候选样品中的异常。最终,我们编制了一个包含 40,759 个边缘 LSBG 候选药物的目录。该样本与训练数据集具有相似的特征,主要由蓝色边缘的 LSBG 候选者组成。该目录可通过此 https URL 在线获取。

2024-04-11

yolo使用TomFormer及早准确检测番茄叶病

番茄叶病对番茄种植者构成了重大挑战,导致作物产量大幅下降。及时准确地识别番茄叶病对于成功实施病害管理策略至关重要。本文介绍了一种基于变压器的模型,称为TomFormer,用于番茄叶病检测。该论文的主要贡献包括以下几点:首先,我们提出了一种检测番茄叶病的新方法,即采用结合视觉转换器和卷积神经网络的融合模型。其次,我们的目标是将我们提出的方法应用于Hello Stretch机器人,以实现番茄叶病的实时诊断。第三,我们通过将我们的方法与 YOLOS、DETR、ViT 和 Swin 等模型进行比较来评估我们的方法,证明其能够实现最先进的结果。为了进行实验,我们使用了三个番茄叶病数据集,即 KUTomaDATA、PlantDoc 和 PlanVillage,其中 KUTomaDATA 是从阿联酋阿布扎比的一个温室收集的。最后,我们对模型的性能进行了全面分析,并彻底讨论了我们方法固有的局限性。TomFormer 在 KUTomaDATA、PlantDoc 和 PlantVillage 数据集上表现良好,平均准确率 (mAP) 得分分别为 87%、81% 和 83%。mAP的比较结果表明,我们的方法

2024-04-11

YOLOv7无人机实时探测人体

计算机视觉和遥感中最重要的问题之一是物体检测,它可以识别图片中不同事物的特定类别。公共安全的两个关键数据来源是无人驾驶飞行器(UAV)产生的热红外(TIR)遥感多场景照片和视频。由于目标尺度小,场景信息复杂,相对于可观看视频的分辨率较低,并且缺乏公开可用的标记数据集和训练模型,因此其目标检测过程仍然很困难。本研究提出了一种用于图片和视频的UAV TIR目标检测框架。用于收集地面TIR照片和视频的前视红外(FLIR)相机用于创建基于CNN架构的“你只看一次”(YOLO)模型。结果表明,在验证任务中,使用YOLOv7(YOLO版本7)最先进的模型\cite{1},检测人体的平均精度为IOU(Intersection over Union)= 0.5,为72.5%,而检测速度约为161帧/秒(FPS/秒)。该应用展示了YOLO架构的实用性,该应用根据YOLOv7模型从各种无人机的观察角度评估了无人机TIR视频中人员的交叉检测性能。本工作对使用深度学习模型的TIR图片和视频目标检测进行定性和定量评估得到了有利的支持。

2024-04-11

使用 YOLO 对牛栏编号进行分类

本文介绍了CowStallNumbers数据集,该数据集是从奶牛视频中提取的图像集合,旨在推进奶牛摊位数量检测领域。该数据集包括 1042 张训练图像和 261 张测试图像,摊位数范围为 0 到 60。为了增强数据集,我们对YOLO模型进行了微调,并应用了数据增强技术,包括随机裁剪、中心裁剪和随机旋转。实验结果表明,识别失速数的准确率为95.4%。

2024-04-11

使用 YOLOv7 和 ESRGAN 改进坑洼检测

坑洼是常见的道路危险,会对车辆造成损坏并给驾驶员带来安全风险。卷积神经网络(CNN)的引入在业界广泛用于基于深度学习方法的目标检测,并在硬件改进和软件实现方面取得了重大进展。在本文中,提出了一种独特的更好算法,以保证使用低分辨率相机或低分辨率图像和视频源,通过超分辨率生成对抗网络(SRGAN)使用超分辨率(SR)进行自动坑洼检测。然后,我们继续使用 You Only Look Once (YOLO) 网络(即 YOLOv7 网络)在低质量和高质量行车记录仪图像上建立基线坑洼检测性能。然后,我们说明并检查了在对低质量图像进行放大实施后,在基准之上获得的速度和准确性。

2024-04-11

基于YOLO的动态序列匹配模型,实现高效的无覆盖图像隐写

许多现有的无封面隐写术方法在封面图像和隐藏数据之间建立了映射关系。存在一个问题,即存储在数据库中的图像数量会随着隐写能力的增加而呈指数增长。对高隐写能力的需求使得构建图像数据库具有挑战性。为了提高隐写系统的图像库利用率和抗攻击能力,我们提出了一种基于动态匹配子串的高效无覆盖方案。YOLO用于选择最优对象,并在这些对象和加扰因子之间建立映射字典。借助该字典,每个图像都被有效地分配给特定的加扰因子,该因子用于加扰接收器的序列键。为了在有限的图像库中实现足够的隐写能力,加扰序列的所有子串都具有隐藏数据的潜力。完成秘密信息匹配后,将从数据库中获得理想数量的stego图像。实验结果表明,该技术在数据负载、传输安全性、隐藏能力等方面优于以往大多数工作。在典型的几何攻击下,它平均可以恢复79.85%的秘密信息。此外,只需要大约 200 个随机图像即可满足每个图像 19 位的容量。

2024-04-11

使用YOLO v7在磁共振成像中检测肾脏

简介 本研究探讨了使用最新的 You Only Look Once (YOLO V7) 物体检测方法,通过训练和测试医学图像格式上的改进 YOLO V7,来增强医学成像中的肾脏检测。方法 研究纳入878例肾细胞癌(RCC)不同亚型患者和206例肾脏正常患者。共检索到1084例患者的5657次MRI扫描。从回顾性维护的数据库中招募了 326 名患者,涉及 1034 个肿瘤,并在他们的肿瘤周围绘制了边界框。在 80% 的注释案例上训练了主要模型,其中 20% 用于测试(主要测试集)。然后使用最佳主要模型来识别其余 861 名患者的肿瘤,并使用该模型在他们的扫描中生成边界框坐标。创建了 10 个基准训练集,其中包含未分段患者的生成坐标。用于预测主要测试集中肾脏的最终模型。我们报告了阳性预测值(PPV)、灵敏度和平均精密度(mAP)。结果 初级训练集的平均PPV为0.94 +/- 0.01,灵敏度为0.87 +/- 0.04,mAP为0.91 +/- 0.02。最佳主要模型的 PPV 为 0.97,灵敏度为 0.92,mAP 为 0.95。最终模型的平均 PPV 为 0.95 +/- 0.03

2024-04-11

YOLO-CIANNA:在无线电数据中进行深度学习的星系检测 I. 一种受YOLO启发的新型源检测方法应用于SKAO SDC1

即将到来的平方公里阵列(SKA)将为天文仪器产生的数据量设定一个新标准,这可能会挑战广泛采用的数据分析工具,这些工具无法与数据大小进行充分扩展。本研究旨在通过应用现代深度学习目标检测技术,为海量射电天文数据集开发一种新的源检测和表征方法。这些方法已经证明了它们在复杂的计算机视觉任务中的效率,我们试图确定它们在应用于天文数据时的具体优势和劣势。我们介绍了YOLO-CIANNA,这是一款专为天文数据集设计的高度定制的深度学习目标探测器。本文介绍了该方法,并描述了解决射电天文图像特定挑战所需的所有低级适应。我们使用来自 SKAO SDC1 数据集的模拟 2D 连续体图像演示了这种方法的功能。我们的方法优于特定 SDC1 数据集上所有其他已发表的结果。使用 SDC1 指标,我们将挑战获胜分数提高了 +139\%,将唯一其他挑战后参与的分数提高了 +61\%。我们的目录的检测纯度为 94%,同时检测的来源比以前的最高分结果多 40 至 60%。经过训练的模型还可以强制在后处理中达到 99% 的纯度,并且仍然比其他高分方法多检测 10% 到 30% 的来源。它还能够实时检测,在单个 GPU 上每秒

2024-04-11

具有混合注意力特征金字塔网络的YOLO算法,用于焊点缺陷检测

传统的人工检测焊点缺陷在工业生产中不再适用,因为效率低、评估不一致、成本高、缺乏实时数据。针对工业场景表面贴装技术中焊点缺陷检测精度低、误检率高、计算成本高等问题,提出了一种新的方法。所提出的解决方案是专门为焊点缺陷检测算法设计的混合注意力机制,通过提高精度同时降低计算成本来改善制造过程中的质量控制。混合注意力机制包括一种增强的多头自注意力和协调注意力机制,增加了注意力网络感知上下文信息的能力,并增强了网络特征的利用范围。坐标注意力机制增强了不同通道之间的连接,减少了位置信息丢失。混合注意力机制增强了网络感知远距离位置信息和学习局部特征的能力。改进后的算法模型对焊点缺陷检测具有较好的检测能力,mAP达到91.5%,比“只看一次”第5版算法高4.3%,优于其他对比算法。与其他版本相比,平均平均精度、精度、召回率和每秒帧数指标也有所改进。在满足实时检测要求的同时,可以提高检测精度。

2024-04-11

DiffYOLO:通过YOLO和扩散模型进行抗噪声目标检测

以YOLO系列为代表的目标检测模型得到了广泛的应用,并在高质量的数据集上取得了很好的成绩,但并不是所有的工作条件都是理想的。为了解决在低质量数据集上定位目标的问题,现有方法要么训练新的目标检测网络,要么需要大量低质量数据集进行训练。然而,我们在本文中提出了一个框架,并将其应用于称为 DiffYOLO 的 YOLO 模型。具体来说,我们从去噪扩散概率模型中提取特征图,以增强训练有素的模型,这使我们能够在高质量数据集上微调YOLO,并在低质量数据集上进行测试。结果证明,该框架不仅可以证明在噪声数据集上的性能,还可以证明在高质量测试数据集上的检测结果。我们稍后将补充更多的实验(使用各种数据集和网络架构)。

2024-04-11

YOLO-Former:YOLO与ViT握手

所提出的YOLO-Former方法将Transformer和YOLOv4的思想无缝集成,创建了一个高精度、高效率的目标检测系统。该方法利用了 YOLOv4 的快速推理速度,并通过集成卷积注意力和 transformer 模块,融合了 transformer 架构的优势。结果验证了所提方法的有效性,在Pascal VOC数据集上的平均精度(mAP)为85.76\%,同时保持了较高的预测速度,帧速率为每秒10.85帧。这项工作的贡献在于展示了这两种最先进技术的创新组合如何导致目标检测领域的进一步改进。

2024-04-11

基于深度学习的综合感知与通信系统中的目标-用户关联

在集成传感和通信 (ISAC) 系统中,将雷达目标与通信用户设备 (UE) 相匹配可用于多种通信任务,例如主动切换和波束预测。在本文中,我们考虑了一种雷达辅助通信系统,其中基站(BS)配备了具有双重目标的多输入多输出(MIMO)雷达:(i)将车载雷达目标与通信波束空间中的车载设备(VE)相关联,以及(ii)根据雷达数据预测每个VE的波束成形矢量。建议的目标用户 (T2U) 关联包括两个阶段。首先,从距角图像中检测车辆雷达目标,并估计每个目标的波束成形矢量。然后,将推断出的每目标波束成形矢量与BS上用于通信的波束成形矢量进行匹配,以执行目标到用户(T2U)关联。通过修改“只看一次”(YOLO)模型,在模拟的距离角度雷达图像上进行训练,从而获得联合多目标检测和波束推理。不同城市车辆出行情景下的仿真结果表明,所提T2U方法提供了随BS天线阵列尺寸增加而增加的正确关联概率,突出了波束空间中VE可分离性的相应增加。此外,我们表明,改进后的YOLO架构可以有效地进行波束预测和雷达目标检测,在不同天线阵列尺寸下,后者的平均精度相似。

2024-04-11

使用基于YOLO的学习方法对农业进行实时目标检测和机器人操作

优化普通种植作物的作物收获过程对于农业产业化的目标具有重要意义。如今,机器视觉的利用使农作物的自动识别成为可能,从而提高了收割效率,但挑战仍然存在。本研究提出了一个新框架,该框架结合了卷积神经网络(CNN)的两个独立架构,以便在模拟环境中同时完成作物检测和收获(机器人操作)的任务。模拟环境中的裁剪图像会进行随机旋转、裁剪、亮度和对比度调整,以创建用于数据集生成的增强图像。“你只看一次”算法框架与传统的矩形边界框一起使用,用于作物定位。随后,所提出的方法通过视觉几何组模型利用获取的图像数据,以揭示机器人操作的抓取位置。

2024-04-11

YOLO-World:实时开放词汇对象检测

You Only Look Once (YOLO) 系列探测器已成为高效实用的工具。但是,它们对预定义和训练对象类别的依赖限制了它们在开放场景中的适用性。为了解决这一局限性,我们引入了 YOLO-World,这是一种创新方法,通过视觉语言建模和大规模数据集的预训练,增强了 YOLO 的开放词汇检测功能。具体而言,我们提出了一种新的可重新参数化的视觉-语言路径聚合网络(RepVL-PAN)和区域-文本对比损失,以促进视觉和语言信息之间的交互。我们的方法擅长以零射程、高效率检测各种物体。在具有挑战性的 LVIS 数据集上,YOLO-World 在 V100 上以 52.0 FPS 实现了 35.4 AP,在准确性和速度方面都优于许多最先进的方法。此外,经过微调的 YOLO-World 在多个下游任务上取得了出色的性能,包括对象检测和开放词汇实例分割。

2024-04-11

基于YOLO的红外小目标检测范式

在计算机视觉中,检测红外图像中从小到小的目标是一项具有挑战性的任务,尤其是在将这些目标与嘈杂或有纹理的背景区分开来时。与分割神经网络相比,YOLO 等传统目标检测方法难以检测微小目标,导致检测小目标时性能较弱。为了在保持高检测率的同时减少误报的数量,我们引入了反之亦然YOLO检测器训练的决策标准。后者利用了出乎意料的小目标,以区分他们与复杂背景。将这一统计标准添加到YOLOv7-tine中,弥合了用于红外小目标检测和目标检测网络的最先进的分割方法之间的性能差距。它还显著提高了YOLO在少镜头设置下的鲁棒性。

2024-04-11

深度学习 国际象棋游戏数据集

数据集介绍 数据介绍 这是从Lichess.org网站上的精选用户那里收集的20,000多个游戏的集合,以及如何收集更多游戏。将来,我还会收集更多游戏。 内容范围 游戏编号; 额定(T / F); 开始时间; 时间结束; 转弯数量; 游戏状态; 优胜者; 时间增量; 白色玩家编号; 白人球员等级; 黑人玩家ID; 黑人球员等级; 标准象棋符号的所有动作; 开放的生态(任何给定开口的标准化代码,在此处列出); 开幕名称; 开启层(开启阶段的移动次数) 探索方向 单个国际象棋游戏中包含许多信息,更不用说多个游戏的完整数据集了。它主要是一种模式游戏,而数据科学就是要检测数据模式,这就是为什么国际象棋是过去在AI领域投入最多的原因之一。该数据集收集了20,000个游戏中可用的所有信息,并以易于处理的格式进行了分析,例如,分析了允许玩家以黑白棋获胜的方式,多少元(游戏外)影响游戏的因素,黑白与空缺与胜利之间的关系等等。

2024-07-31

深度学习行人检测数据集

行人检测的图片,内置10000张行人图像,1000张骑自行车图像,1000张骑车图像。

2024-07-31

Kolektor:表面缺陷数据集

该数据集是Kolektor Group收集并标注的电子换向器缺陷数据集。数据集中包含了50种编写的电子换向器,每种有8张图片以及其语义分割的label。图像的大小为500×1240像素。 数据集介绍 该数据集是Kolektor Group收集并标注的电子换向器缺陷数据集。数据集中包含了50种编写的电子换向器,每种有8张图片以及其语义分割的label。图像的大小为500×1240像素。 数据集包括: 399幅图片:52幅可见缺陷图像、347幅图像无任何缺陷 尺寸的原始图像:宽度:500 px,高度:1240至1270 px 对于训练和评估,图像应该调整到512 x 1408 px。 对于每个项目,缺陷仅在至少一个图像中可见,而两个项目在两个图像上有缺陷,这意味着有52个图像中的缺陷是可见的。其余347幅图像作为无缺陷表面的负面例子.

2024-07-31

第14章 稳定状态模型.pdf

第14章 稳定状态模型

2024-05-14

第05章 图与网络.pdf

第05章 图与网络

2024-05-14

第21章 目标规划.pdf

第21章 目标规划

2024-05-14

第28章 灰色系统理论及其应用.pdf

第28章 灰色系统理论及其应用

2024-05-14

第06章 排队论.pdf

第06章 排队论

2024-05-14

第16章 差分方程模型.pdf

第16章 差分方程模型

2024-05-14

第07章 对策论.pdf

第07章 对策论

2024-05-14

第19章 神经网络模型.pdf

第19章 神经网络模型

2024-05-14

第23章 现代优化算法.pdf

第23章 现代优化算法

2024-05-14

第09章 插值与拟合.pdf

第09章 插值与拟合

2024-05-14

第08章 层次分析法.pdf

第08章 层次分析法

2024-05-14

第12章 回归分析.pdf

第12章 回归分析

2024-05-14

第13章 微分方程建模.pdf

第13章 微分方程建模

2024-05-14

第30章 偏最小二乘回归.pdf

第30章 偏最小二乘回归

2024-05-14

第11章 方差分析.pdf

第11章 方差分析

2024-05-14

第25章 存贮论.pdf

第25章 存贮论

2024-05-14

第04章 动态规划.pdf

第04章 动态规划

2024-05-14

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除