自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3656)
  • 资源 (10)
  • 收藏
  • 关注

原创 YOLO项目环境配置教程

YOLO项目环境安装,环境配置,项目环境配置,python虚拟环境搭建

2024-10-16 22:49:28 3175

原创 基于深度学习YOLOv8的麻将识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv8目标检测算法,开发了一套专门用于麻将牌识别的智能检测系统。系统能够准确识别和分类42种不同类型的麻将牌,包括万子(1-9万)、筒子(1-9筒)、条子(1-9条)以及东南西北风、红中、发财、白板等特殊牌型。项目使用了包含6,731张标注图像的数据集,其中训练集5,565张,验证集684张,测试集482张,确保了模型的泛化能力和识别准确率。该系统实现了麻将牌的实时检测与分类,完全满足实际应用场景的需求。

2025-05-20 19:55:51 437

原创 基于深度学习YOLOv8的扑克牌识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv8目标检测算法,开发了一套高精度的扑克牌识别检测系统。系统能够实时识别和定位图像或视频流中的扑克牌,准确区分52种不同的扑克牌类别(包括从A到10以及J、Q、K四种花色的所有组合)。项目使用了大规模的自建数据集,包含训练集21,203张图像、验证集2,020张图像和测试集1,010张图像,确保了模型的泛化能力和鲁棒性。该技术可广泛应用于赌场监控、智能发牌系统、扑克游戏开发、魔术辅助训练等多个领域,为传统纸牌游戏和娱乐产业带来智能化革新。

2025-05-20 19:48:22 437

原创 基于深度学习YOLOv10的麻将识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10目标检测算法开发了一套专业的麻将牌识别检测系统,旨在实现对各类麻将牌的高精度识别与定位。系统能够准确识别42种不同类型的麻将牌,包括万、条、筒、风牌和箭牌等常见麻将类别。项目采用深度学习技术,通过精心构建的数据集进行模型训练,最终实现了在复杂背景下对麻将牌的快速、准确识别。该系统可应用于麻将游戏自动记分、麻将教学辅助、智能麻将机开发等多个领域,具有广泛的应用前景和商业价值。

2025-05-20 08:35:40 796

原创 基于深度学习YOLOv10的扑克牌识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10目标检测算法开发了一套高精度的扑克牌识别检测系统,能够准确识别和定位52种标准扑克牌(包括13个点数×4种花色)。系统在包含24,233张图像的数据集上进行了训练和验证,其中训练集21,203张,验证集2,020张,测试集1,010张。该系统可实时检测扑克牌的种类、位置和数量,可广泛应用于赌场监控、扑克游戏自动计分、魔术教学分析、智能机器人抓取等多个领域,具有重要的实用价值和商业前景。

2025-05-20 08:25:32 552

原创 基于深度学习YOLOv8的安全背心穿戴识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8目标检测算法开发了一套安全背心穿戴识别检测系统,专门用于识别工作人员是否按规定穿着安全背心。系统采用深度学习技术,通过对监控视频流或静态图像的实时分析,能够准确检测并分类"穿着安全背心"(vest)和"未穿安全背心"(no-vest)两种情况。项目构建了包含3897张图像的数据集(训练集2728张,验证集779张,测试集390张),经过模型训练和优化,实现了高精度的安全背心识别功能。该系统可广泛应用于建筑工地、矿区、电力维修、道路施工等高危作业场所,为安全生产管理提供智能化技术支持。

2025-05-19 10:35:41 555

原创 基于深度学习YOLOv8的篮球运动员检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8目标检测算法开发了一套专业的篮球比赛场景智能分析系统,能够实时检测和识别比赛中的9类关键元素:篮球(Ball)、篮筐(Hoop)、比赛节次(Period)、运动员(Player)、裁判(Ref)、进攻计时器(Shot Clock)、队名(Team Name)、球队得分(Team Points)和剩余时间(Time Remaining)。系统使用包含1,196张标注图像的数据集进行训练和评估,其中训练集1,140张,验证集32张,测试集24张。

2025-05-19 10:13:30 831

原创 基于深度学习YOLOv8的杂草检测系统(12种)(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv8目标检测算法,开发了一个能够识别12种常见杂草的智能检测系统。系统针对农业领域中的杂草识别难题,通过深度学习技术实现了对12种植物的高精度识别。项目使用了包含3319张标注图像的数据集(训练集2796张,验证集523张),通过数据增强、模型优化等技术手段,构建了一个高效、准确的杂草检测模型。该系统可应用于精准农业、智能除草设备、农田监测等多个场景,为现代农业提供智能化解决方案。

2025-05-19 10:05:10 563

原创 基于深度学习YOLOv10的安全背心穿戴识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10目标检测算法开发了一套安全背心穿戴识别检测系统,专门用于识别工作人员是否按规定穿着安全背心。系统包含两个检测类别:"vest"(穿着安全背心)和"no-vest"(未穿安全背心)。项目使用自定义数据集进行训练,其中训练集包含2728张图像,验证集779张图像,测试集390张图像,总计3897张标注图像。该系统可广泛应用于建筑工地、矿区、交通指挥等需要强制穿戴安全背心的高危作业场所,通过实时视频监控自动检测人员着装合规性,显著提升安全管理效率,降低因未穿戴防护装备导致的安全事故风险。

2025-05-19 09:57:37 798

原创 基于深度学习YOLOv10的篮球运动员检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10目标检测算法开发了一个专门针对篮球比赛场景的智能检测系统,能够实时识别和分类篮球场上的9类关键元素,包括球员、裁判、篮球、篮筐、比赛阶段、计时器、队名、得分以及剩余时间等。系统使用精心构建的篮球比赛专用数据集进行训练和验证,训练集包含1140张图像,验证集32张,测试集24张。该检测系统可为篮球比赛分析、智能裁判辅助、自动赛事直播、球员表现统计等应用提供核心技术支撑,具有重要的体育科技应用价值。

2025-05-15 19:51:26 836

原创 基于深度学习YOLOv10的杂草检测系统(12种)(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10目标检测算法开发了一套高效的杂草识别系统,专门用于检测和分类12种常见杂草物种。系统通过深度学习技术实现了对农田杂草的精准识别,为精准农业和智能除草提供了技术支持。项目使用包含3319张标注图像的数据集(训练集2796张,验证集523张)进行模型训练和验证,实现了对'eclipta'、'ipomoea'、'eleusine'等12种杂草的高精度检测。该系统可广泛应用于农业生产、生态研究和杂草防控等领域,具有重要的实用价值和科研意义。

2025-05-15 19:41:40 771

原创 基于深度学习YOLOv8的密集行人检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8目标检测算法开发了一套专门针对密集场景的行人检测系统。系统使用自定义数据集进行训练和验证,其中训练集包含7200张标注图像,验证集包含1800张标注图像,所有数据均只包含"person"单一类别(nc=1)。该系统针对人群密集场景进行了优化,能够在复杂环境下实现高精度、实时的行人检测,可广泛应用于公共安全监控、人群流量统计、智能交通管理等领域。

2025-05-14 20:22:23 578

原创 基于深度学习YOLOv10的密集行人检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于最新的YOLOv10目标检测算法,开发了一个专门针对密集行人场景的高效检测系统。系统针对单一类别("person")进行优化,使用包含9000张图像的自定义数据集(训练集7200张,验证集1800张)进行模型训练和验证。该检测系统在保持实时性能的同时,特别优化了对密集、遮挡情况下的行人检测能力,可应用于智能监控、公共安全、客流统计等多种实际场景。通过数据增强、模型轻量化等技术手段,在保证检测精度的前提下提升了系统的运行效率。

2025-05-14 20:10:04 771

原创 基于深度学习YOLOv8的小目标车辆检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8算法开发了一套专门针对小目标车辆检测的计算机视觉系统,使用了一个包含5236张训练图像和2245张验证图像的自定义数据集。系统专注于单一类别('car')的检测任务,通过优化YOLOv8的网络结构和训练策略,显著提升了模型对小尺寸车辆的识别能力。该系统能够在复杂场景中准确检测各类小型车辆目标,包括远距离车辆、部分遮挡车辆以及低分辨率环境下的车辆目标。实验结果表明,经过针对性优化的YOLOv8模型在小目标车辆检测任务上达到了较高的精度和召回率,验证了该系统在实际应用中的有效性。

2025-05-14 19:56:24 1110

原创 基于深度学习YOLOv8的车辆行人检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv8目标检测算法,开发了一个专门针对车辆和行人检测的智能视觉系统。系统采用深度学习技术,使用包含5607张标注图像的数据集(其中训练集4485张,验证集1122张)进行模型训练,能够实时准确地识别场景中的"person"(行人)和"car"(车辆)两类目标。该系统实现了较高的检测精度和实时性能,可广泛应用于智能交通监控、自动驾驶辅助、智慧城市建设等多个领域。项目通过数据增强、模型优化等技术手段,在有限的数据集规模下仍取得了良好的检测效果。

2025-05-14 19:47:05 874

原创 基于深度学习YOLOv8的超市商品识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8深度学习框架开发了一套先进的超市商品识别检测系统,旨在实现超市环境中295种不同商品的精准识别与定位。系统经过大规模数据集训练,包含训练集8336张图像和验证集2163张图像,覆盖了从食品饮料到日用百货的广泛商品类别。本系统采用最新的计算机视觉技术,在商品识别准确率、检测速度和系统稳定性方面均达到行业领先水平,为零售行业智能化转型提供了强有力的技术支持。

2025-05-14 14:50:45 590

原创 基于深度学习YOLOv8的森林火焰烟雾检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8深度学习目标检测算法,开发了一套高效、实时的森林火焰与烟雾智能检测系统。系统专注于检测火灾(fire)和烟雾(smoke)两类目标,采用2,604张标注图像(训练集2,083张、验证集260张、测试集261张)进行模型训练与优化。该系统能够通过监控视频或无人机航拍实时识别早期火灾及烟雾迹象,为森林防火、灾害预警及应急响应提供智能化解决方案。

2025-05-14 14:42:26 970

原创 基于深度学习YOLOv8的道路坑洼检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv8目标检测算法,开发了一套高效准确的道路坑洼检测系统。系统专门针对道路坑洼(pothole)这一单一类别进行检测,使用包含1784张图像的数据集(训练集1265张,验证集401张,测试集118张)进行模型训练和评估。该系统能够实时识别道路表面的坑洼缺陷,为道路维护和管理提供智能化解决方案。通过深度学习技术的应用,本系统在检测精度和速度方面都达到了实用化水平,显著优于传统人工巡检方法。项目实现了从数据采集、标注、模型训练到实际应用的全流程开发,为智慧交通基础设施管理提供了有力工具。

2025-05-14 14:09:08 786

原创 基于深度学习YOLOv8的野生动物识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv8目标检测算法,开发了一套高效准确的野生动物识别检测系统,专门用于识别五种常见野生动物:郊狼(Coyote)、鹿(Deer)、野猪(Hog)、兔子(Rabbit)和浣熊(Raccoon)。系统采用大规模标注数据集进行训练,包含训练集10,665张图像、验证集928张图像和测试集536张图像,确保了模型的泛化能力和识别准确性。通过深度学习技术,该系统能够实时处理图像和视频流,自动定位并分类画面中的野生动物,为野生动物保护、生态研究和人类与野生动物共存管理提供智能化解决方案。

2025-05-13 09:08:42 748

原创 基于深度学习YOLOv8的美国硬币识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8目标检测算法开发了一套美国硬币自动识别系统,能够准确识别和分类四种常见美国硬币:Dime(10美分)、Nickel(5美分)、Penny(1美分)和Quarter(25美分)。系统采用计算机视觉技术实现硬币的实时检测与分类,具有较高的识别准确率和鲁棒性。项目使用自定义数据集进行模型训练,通过数据增强技术提高模型泛化能力。该系统可应用于自动售货机、自助收银台、银行货币分拣等多种场景,为实现硬币自动化处理提供了高效的技术解决方案。

2025-05-13 08:59:43 774

原创 基于深度学习YOLOv8的施工现场安全检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8深度学习算法开发了一套施工现场安全检测系统,旨在通过计算机视觉技术自动识别施工现场中的各类安全要素。系统能够检测25类不同的目标(nc:25),包括施工设备(如挖掘机、装载机)、安全装备(如安全帽、反光背心、手套)、人员、车辆以及违规行为(如未戴安全帽、未戴口罩、未穿反光背心等)。项目使用了包含717张图像的数据集(训练集521张,验证集114张,测试集82张),通过数据增强和迁移学习技术优化模型性能。

2025-05-13 08:52:44 1043

原创 基于深度学习YOLOv8的石头剪刀布检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv8目标检测算法,开发了一个高效准确的石头剪刀布手势识别系统。系统使用专门收集的手势数据集进行训练,其中包含训练集6455张图像、验证集576张图像以及测试集304张图像,共计7335张标注图像。系统能够实时检测并分类三种基本手势:布(Paper)、石头(Rock)和剪刀(Scissors),准确率达到工业应用水平。该系统采用深度学习技术,通过大量数据训练使模型能够适应不同光照条件、手势角度和背景环境,具有较强的鲁棒性。

2025-05-13 08:23:51 1065

原创 基于深度学习YOLOv10的野生动物识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10深度学习框架开发了一套高效的野生动物识别检测系统,专门针对五种常见野生动物(郊狼、鹿、野猪、兔子和浣熊)进行实时检测与识别。系统使用超过12,000张标注图像进行训练和验证,在测试集上表现出优异的性能。该解决方案可广泛应用于野生动物保护、生态监测、农业防护和自动驾驶防撞系统等领域,为人类与野生动物和谐共处提供智能化技术支持。

2025-05-12 23:17:08 826

原创 基于深度学习YOLOv10的美国硬币识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv10目标检测算法,开发了一套高精度的美国硬币识别检测系统,能够准确识别和分类四种常见美国硬币:1美分(Penny)、5美分(Nickel)、10美分(Dime)和25美分(Quarter)。系统针对硬币检测的特殊挑战进行了优化,包括金属反光、尺寸相近、堆叠遮挡等情况。该系统可应用于自动售货机、自助收银台、银行柜台等场景的硬币自动清点与真伪鉴别,显著提高硬币处理效率和准确性。

2025-05-12 23:02:43 655

原创 基于深度学习YOLOv10的施工现场安全检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10目标检测算法开发了一套施工现场安全检测系统,专门用于建筑工地环境下的安全合规性监测。系统能够实时检测25类施工现场常见对象,包括施工人员个人防护装备(如安全帽、反光背心、口罩等)、各类工程机械(如挖掘机、装载机等)以及施工车辆(卡车、拖车等)。通过深度学习技术,系统可自动识别未佩戴安全防护装备的违规行为,及时发出警报,有效提升施工现场安全管理水平。项目使用包含717张标注图像的自定义数据集进行训练和验证,平均精度达到工业应用标准。

2025-05-12 22:47:28 737

原创 基于深度学习YOLOv10的石头剪刀布检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10目标检测算法开发了一个石头剪刀布手势识别系统,能够实时检测并分类用户展示的"石头"、"剪刀"、"布"三种手势。系统使用自定义数据集进行训练,包含训练集6455张图像、验证集576张图像和测试集304张图像,共计7335张标注图像。实验表明,YOLOv10在该手势识别任务上表现出色,实现了高精度和实时性的平衡。该系统可广泛应用于人机交互游戏、智能教学辅助、无障碍交互设备等多种场景,为人机自然交互提供了新的技术解决方案。

2025-05-12 22:33:52 856

原创 基于深度学习YOLOv8的苹果成熟度检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8目标检测算法开发了一套苹果成熟度自动检测系统,能够准确识别并分类苹果的五个成熟度等级:100%成熟度('100-_ripeness')、20%成熟度('20-_ripeness')、50%成熟度('50-_ripeness')、75%成熟度('75-_ripeness')以及腐烂苹果('rotten_apple')。系统采用大规模专业数据集进行训练,包含训练集2144张图像、验证集359张图像和测试集225张图像,确保了模型的泛化能力和检测精度。

2025-05-12 11:07:57 1215

原创 基于深度学习YOLOv10的苹果成熟度检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10目标检测算法开发了一套苹果成熟度自动检测系统,能够准确识别并分类苹果的五个成熟度等级:20%成熟、50%成熟、75%成熟、100%成熟以及腐烂苹果。系统使用包含2728张标注图像的数据集(训练集2144张,验证集359张,测试集225张)进行训练和评估,实现了对苹果成熟状态的精确识别。该技术可应用于果园自动化管理、智能采摘机器人、水果品质分级等农业场景,显著提高水果采收效率和质量控制水平,减少人工判断的主观性和误差,为现代农业智能化发展提供技术支持。

2025-05-12 10:48:53 899

原创 基于深度学习YOLOv8的足球运动员检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8目标检测算法,开发了一套高效的足球比赛场景多目标检测系统,能够实时识别并分类比赛中的关键目标,包括足球(ball)、守门员(goalkeeper)、普通球员(player)和裁判(referee)。该系统可应用于足球比赛分析、智能裁判辅助、自动直播跟踪、体育数据统计等多个场景,为体育科技和赛事智能化管理提供技术支持。相比传统人工标注或基于固定摄像头的检测方法,本系统具有实时性强、适应性强、自动化程度高的特点,能够大幅降低人力成本,提高比赛分析的效率和准确性。

2025-05-12 08:42:30 753

原创 基于深度学习YOLOv8的轴承缺陷检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv8目标检测算法,开发了一套高效的轴承表面缺陷自动检测系统。系统针对四种常见轴承缺陷类型(凹槽、凹线、擦伤和划痕)进行识别和分类,使用包含1085张标注图像的数据集(训练集759张,验证集326张)进行模型训练与验证。该系统能够实时检测轴承表面缺陷,准确识别缺陷类型并定位缺陷位置,为工业生产中的轴承质量检测提供了智能化解决方案。通过深度学习技术的应用,本系统显著提高了轴承缺陷检测的效率和准确性,相比传统人工检测方法具有明显优势。

2025-05-12 08:33:47 623

原创 基于深度学习YOLOv10的足球运动员检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于 YOLOv10 目标检测算法,开发了一套高效、实时的足球运动员检测系统,用于识别和分类足球比赛中的关键目标,包括球员(player)、守门员(goalkeeper)、裁判(referee)和足球(ball)。系统进行模型训练和优化,实现了对足球比赛场景中不同角色的精准检测。该系统可广泛应用于足球比赛分析、智能裁判辅助、自动化赛事直播、体育训练数据分析等领域,能够显著提升比赛数据的采集效率,减少人工标注成本,并为体育科技和智能视频分析提供技术支持。

2025-05-12 08:26:16 953

原创 基于深度学习YOLOv10的轴承缺陷检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10目标检测算法开发了一套高效的轴承缺陷检测系统,专门用于识别和分类工业轴承中的四种常见缺陷类型:凹槽(aocao)、凹线(aoxian)、擦伤(cashang)和划痕(huahen)。系统采用了包含1085张高质量轴承图像的数据集(训练集759张,验证集326张)进行模型训练和验证,实现了对轴承表面缺陷的快速、准确检测。该系统可广泛应用于工业生产线上的轴承质量检测环节,显著提高检测效率和准确性,降低人工检测成本,为智能制造和工业4.0的发展提供有力支持。

2025-05-12 08:09:55 837

原创 基于深度学习YOLOv8的水果分类检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8目标检测算法,开发了一套高效、精准的水果自动分类检测系统,能够实时识别并分类六种常见水果:苹果(Apple)、香蕉(Banana)、芒果(Mango)、橙子(Orange)、菠萝(Pineapple)、西瓜(Watermelon)(nc=6)。系统采用深度学习技术,在自建数据集上进行训练和优化,该数据集包含1007张标注图像,其中训练集768张、验证集129张、测试集110张,确保模型具备良好的泛化能力和鲁棒性。

2025-05-11 15:12:40 1002

原创 基于深度学习YOLOv8的森林火灾烟雾红外检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv8目标检测算法,开发了一套专门用于森林火灾早期预警的红外烟雾检测系统。系统采用双类别检测框架(nc=2),能够准确识别"fire"(火焰)和"smoke"(烟雾)两类关键目标。项目构建了包含2000张红外图像的专业数据集,其中训练集1600张、验证集200张、测试集200张,确保了模型训练的充分性和评估的可靠性。该系统通过处理红外摄像头采集的实时图像流,能够实现森林区域的24小时全天候监测,在火灾初期即可发现火源和烟雾迹象,为森林防火提供了一种高效、精准的智能化解决方案。

2025-05-11 14:49:36 698

原创 基于深度学习YOLOv8的木材缺陷检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv8目标检测算法,开发了一套高效的木材缺陷自动检测系统,旨在实现对木材表面常见缺陷(裂纹、死节、活节)的快速、精准识别与分类。系统以深度学习技术为核心,通过训练包含2,259张标注图像的数据集,构建了具备高鲁棒性的检测模型,并在验证集(173张)和测试集(174张)上进行了性能验证。实验表明,该系统能够有效适应木材表面的复杂纹理和缺陷多样性,为木材加工行业提供了一种自动化质量检测解决方案,显著提升了检测效率与准确性,降低了人工成本与误检率。

2025-05-11 14:40:57 754

原创 基于深度学习YOLOv10的水果分类检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10深度学习框架,开发了一套高精度水果多目标分类检测系统,能够同时识别六种常见水果:苹果(Apple)、香蕉(Banana)、芒果(Mango)、橙子(Orange)、菠萝(Pineapple)和西瓜(Watermelon)。系统通过对水果图像进行实时分析,可准确识别水果种类并定位其位置,为智能零售、自动分拣、农业收获等场景提供高效解决方案。项目构建了包含1007张高质量标注图像的数据集,其中训练集768张,验证集129张,测试集110张。

2025-05-11 14:32:29 910

原创 基于深度学习YOLOv10的森林火灾烟雾红外检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv10目标检测算法,开发了一套高性能的森林火灾烟雾红外检测系统,专门用于从红外图像中识别和定位火灾(fire)和烟雾(smoke)两类关键目标。系统通过对红外热成像视频流的实时分析,能够在复杂自然环境条件下实现早期火灾预警,为森林防火工作提供智能化解决方案。项目构建了包含2000张标注红外图像的专业数据集,其中训练集1600张,验证集和测试集各200张。经实验验证,该系统在森林火灾检测任务中表现出优异的性能,具有检测速度快、准确率高、误报率低等特点,可有效提升森林火灾监测的效率。

2025-05-11 14:17:09 608

原创 基于深度学习YOLOv10的木材缺陷检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10算法开发了一套高效准确的木材缺陷检测系统,专门用于识别和分类木材表面常见的三种缺陷:裂纹(Crack)、死结(Dead Knot)和活结(Live Knot)。系统通过对木材表面图像进行实时分析,能够快速定位缺陷位置并判断其类型,为木材质量评估和分级提供自动化解决方案。项目使用包含2606张标注图像的数据集进行训练和验证,其中训练集2259张,验证集173张,测试集174张。实验结果表明,该系统在木材缺陷检测任务上达到了较高的准确率和召回率,能够满足工业生产中对木材质量检测的需求。

2025-05-11 14:07:23 803

原创 基于深度学习的电子元器件目标检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8深度学习目标检测算法,开发了一套高精度的电子元器件自动识别与分类系统,可准确检测并分类五种常见电子元器件:电容(Capacitor)、电感(Inductor)、LED(Led)、电阻(Resistor)和晶体管(Transistor)。系统采用五分类(nc=5)检测模型,在高质量标注数据集上进行训练和优化,其中训练集包含2103张图像,验证集226张,测试集97张,确保模型具备较高的泛化能力和鲁棒性。

2025-05-10 19:52:38 805

原创 基于深度学习YOLOv8的工地安全帽防护衣检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8目标检测算法开发了一套专门用于建筑工地安全管理的智能检测系统,能够实时识别并检测工人是否佩戴安全帽、穿着防护衣等关键安全装备。系统采用五分类检测模型(nc=5),可准确识别'helmet'(安全帽)、'no-helmet'(未戴安全帽)、'no-vest'(未穿防护衣)、'person'(人员)和'vest'(防护衣)五种目标类别。项目使用包含1,206张标注图像的数据集进行训练和评估,其中训练集997张,验证集119张,测试集90张。

2025-05-10 19:46:20 840

第20章 偏微分方程的数值解.pdf

第20章 偏微分方程的数值解

2024-05-14

数学建模的29个通用模型及matlab解法.zip

第01章 线性规划。 第02章 整数规划 第03章 非线性规划 第04章 动态规划 第05章 图与网络 第06章 排队论 第07章 对策论 第08章 层次分析法 第09章 插值与拟合 第10章 数据的统计描述和分析 第11章 方差分析 第12章 回归分析 第13章 微分方程建模 第14章 稳定状态模型 第15章 常微分方程的解法 第16章 差分方程模型 第17章 马氏链模型 第18章 变分法模型 第19章 神经网络模型 第20章 偏微分方程的数值解 第21章 目标规划 第22章 模糊数学模型 第23章 现代优化算法 第24章 时间序列模型 第25章 存贮论 第26章 经济与金融中的优化问题 第27章 生产与服务运作管理中的优化问题 第28章 灰色系统理论及其应用 第29章 多元分析 第30章 偏最小二乘回归

2024-05-14

yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件

支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件 支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件 支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件 支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件

2024-05-09

Squeezed Edge YOLO:边缘设备上的板载对象检测

由于其在自主导航中的关键作用,对高效车载物体检测的需求正在增加。然而,由于 YOLO 等资源受限的边缘设备上的计算要求很高,因此在此类模型上部署此类检测模型具有挑战性。本文研究了一种名为Squeezed Edge YOLO的压缩目标检测模型。该模型被压缩和优化为千字节的参数,以适应此类边缘设备的板载。为了评估 Squeezed Edge YOLO,使用了两个用例 - 人体和形状检测 - 来展示模型的准确性和性能。此外,该模型还部署在具有 8 个 RISC-V 内核的 GAP8 处理器和具有 4GB 内存的 NVIDIA Jetson Nano 上。实验结果表明,Squeezed Edge YOLO模型尺寸优化了8倍,能效提高了76%,整个过程提高了3.3倍。

2024-04-11

奥地利自动驾驶深度学习视觉模型YOLO和DETR的首次定性观察

本研究探讨了单阶段和两阶段二维目标检测算法的应用,如你只看一次(YOLO)、实时设计模型(RT-DETR)算法在自动物体检测中的应用,以提高奥地利道路上自动驾驶的道路安全性。YOLO算法是一种最先进的实时物体检测系统,以其效率和准确性而闻名。在驾驶环境中,其快速识别和跟踪物体的潜力对于高级驾驶辅助系统(ADAS)和自动驾驶汽车至关重要。该研究的重点是奥地利的道路状况和交通情况带来的独特挑战。该国多样化的景观、不同的天气条件和特定的交通法规需要一种量身定制的方法来进行可靠的物体检测。该研究利用了一个选择性数据集,包括在奥地利道路上拍摄的图像和视频,包括城市、农村和高山环境。

2024-04-11

使用YOLO从SDSS图像中检测到边缘低表面亮度星系候选星系

低表面亮度星系(LSBG)是星系群中较暗的成员,被认为是众多的。然而,由于它们的表面亮度低,寻找广域LSBGs样本是困难的,这反过来又限制了我们充分了解星系的形成和演化以及星系关系的能力。边缘LSBG由于其独特的方向,为研究星系结构和星系成分提供了极好的机会。在这项工作中,我们利用You Only Look Once目标检测算法,通过在斯隆数字巡天(SDSS)中训练281个边缘LSBG来构建边缘LSBG检测模型gri-波段合成图像。该模型在测试集上的召回率为94.64%,纯度为95.38%。我们搜索了 938,046gri来自 SDSS 数据发布 16 的波段图像,发现了 52,293 个候选 LSBG。为了提高候选LSBG的纯度并减少污染,我们采用了深度支持向量数据描述算法来识别候选样品中的异常。最终,我们编制了一个包含 40,759 个边缘 LSBG 候选药物的目录。该样本与训练数据集具有相似的特征,主要由蓝色边缘的 LSBG 候选者组成。该目录可通过此 https URL 在线获取。

2024-04-11

yolo使用TomFormer及早准确检测番茄叶病

番茄叶病对番茄种植者构成了重大挑战,导致作物产量大幅下降。及时准确地识别番茄叶病对于成功实施病害管理策略至关重要。本文介绍了一种基于变压器的模型,称为TomFormer,用于番茄叶病检测。该论文的主要贡献包括以下几点:首先,我们提出了一种检测番茄叶病的新方法,即采用结合视觉转换器和卷积神经网络的融合模型。其次,我们的目标是将我们提出的方法应用于Hello Stretch机器人,以实现番茄叶病的实时诊断。第三,我们通过将我们的方法与 YOLOS、DETR、ViT 和 Swin 等模型进行比较来评估我们的方法,证明其能够实现最先进的结果。为了进行实验,我们使用了三个番茄叶病数据集,即 KUTomaDATA、PlantDoc 和 PlanVillage,其中 KUTomaDATA 是从阿联酋阿布扎比的一个温室收集的。最后,我们对模型的性能进行了全面分析,并彻底讨论了我们方法固有的局限性。TomFormer 在 KUTomaDATA、PlantDoc 和 PlantVillage 数据集上表现良好,平均准确率 (mAP) 得分分别为 87%、81% 和 83%。mAP的比较结果表明,我们的方法

2024-04-11

具有混合注意力特征金字塔网络的YOLO算法,用于焊点缺陷检测

传统的人工检测焊点缺陷在工业生产中不再适用,因为效率低、评估不一致、成本高、缺乏实时数据。针对工业场景表面贴装技术中焊点缺陷检测精度低、误检率高、计算成本高等问题,提出了一种新的方法。所提出的解决方案是专门为焊点缺陷检测算法设计的混合注意力机制,通过提高精度同时降低计算成本来改善制造过程中的质量控制。混合注意力机制包括一种增强的多头自注意力和协调注意力机制,增加了注意力网络感知上下文信息的能力,并增强了网络特征的利用范围。坐标注意力机制增强了不同通道之间的连接,减少了位置信息丢失。混合注意力机制增强了网络感知远距离位置信息和学习局部特征的能力。改进后的算法模型对焊点缺陷检测具有较好的检测能力,mAP达到91.5%,比“只看一次”第5版算法高4.3%,优于其他对比算法。与其他版本相比,平均平均精度、精度、召回率和每秒帧数指标也有所改进。在满足实时检测要求的同时,可以提高检测精度。

2024-04-11

DiffYOLO:通过YOLO和扩散模型进行抗噪声目标检测

以YOLO系列为代表的目标检测模型得到了广泛的应用,并在高质量的数据集上取得了很好的成绩,但并不是所有的工作条件都是理想的。为了解决在低质量数据集上定位目标的问题,现有方法要么训练新的目标检测网络,要么需要大量低质量数据集进行训练。然而,我们在本文中提出了一个框架,并将其应用于称为 DiffYOLO 的 YOLO 模型。具体来说,我们从去噪扩散概率模型中提取特征图,以增强训练有素的模型,这使我们能够在高质量数据集上微调YOLO,并在低质量数据集上进行测试。结果证明,该框架不仅可以证明在噪声数据集上的性能,还可以证明在高质量测试数据集上的检测结果。我们稍后将补充更多的实验(使用各种数据集和网络架构)。

2024-04-11

YOLOv7无人机实时探测人体

计算机视觉和遥感中最重要的问题之一是物体检测,它可以识别图片中不同事物的特定类别。公共安全的两个关键数据来源是无人驾驶飞行器(UAV)产生的热红外(TIR)遥感多场景照片和视频。由于目标尺度小,场景信息复杂,相对于可观看视频的分辨率较低,并且缺乏公开可用的标记数据集和训练模型,因此其目标检测过程仍然很困难。本研究提出了一种用于图片和视频的UAV TIR目标检测框架。用于收集地面TIR照片和视频的前视红外(FLIR)相机用于创建基于CNN架构的“你只看一次”(YOLO)模型。结果表明,在验证任务中,使用YOLOv7(YOLO版本7)最先进的模型\cite{1},检测人体的平均精度为IOU(Intersection over Union)= 0.5,为72.5%,而检测速度约为161帧/秒(FPS/秒)。该应用展示了YOLO架构的实用性,该应用根据YOLOv7模型从各种无人机的观察角度评估了无人机TIR视频中人员的交叉检测性能。本工作对使用深度学习模型的TIR图片和视频目标检测进行定性和定量评估得到了有利的支持。

2024-04-11

使用 YOLO 对牛栏编号进行分类

本文介绍了CowStallNumbers数据集,该数据集是从奶牛视频中提取的图像集合,旨在推进奶牛摊位数量检测领域。该数据集包括 1042 张训练图像和 261 张测试图像,摊位数范围为 0 到 60。为了增强数据集,我们对YOLO模型进行了微调,并应用了数据增强技术,包括随机裁剪、中心裁剪和随机旋转。实验结果表明,识别失速数的准确率为95.4%。

2024-04-11

YOLO-Former:YOLO与ViT握手

所提出的YOLO-Former方法将Transformer和YOLOv4的思想无缝集成,创建了一个高精度、高效率的目标检测系统。该方法利用了 YOLOv4 的快速推理速度,并通过集成卷积注意力和 transformer 模块,融合了 transformer 架构的优势。结果验证了所提方法的有效性,在Pascal VOC数据集上的平均精度(mAP)为85.76\%,同时保持了较高的预测速度,帧速率为每秒10.85帧。这项工作的贡献在于展示了这两种最先进技术的创新组合如何导致目标检测领域的进一步改进。

2024-04-11

使用 YOLOv7 和 ESRGAN 改进坑洼检测

坑洼是常见的道路危险,会对车辆造成损坏并给驾驶员带来安全风险。卷积神经网络(CNN)的引入在业界广泛用于基于深度学习方法的目标检测,并在硬件改进和软件实现方面取得了重大进展。在本文中,提出了一种独特的更好算法,以保证使用低分辨率相机或低分辨率图像和视频源,通过超分辨率生成对抗网络(SRGAN)使用超分辨率(SR)进行自动坑洼检测。然后,我们继续使用 You Only Look Once (YOLO) 网络(即 YOLOv7 网络)在低质量和高质量行车记录仪图像上建立基线坑洼检测性能。然后,我们说明并检查了在对低质量图像进行放大实施后,在基准之上获得的速度和准确性。

2024-04-11

基于YOLO的动态序列匹配模型,实现高效的无覆盖图像隐写

许多现有的无封面隐写术方法在封面图像和隐藏数据之间建立了映射关系。存在一个问题,即存储在数据库中的图像数量会随着隐写能力的增加而呈指数增长。对高隐写能力的需求使得构建图像数据库具有挑战性。为了提高隐写系统的图像库利用率和抗攻击能力,我们提出了一种基于动态匹配子串的高效无覆盖方案。YOLO用于选择最优对象,并在这些对象和加扰因子之间建立映射字典。借助该字典,每个图像都被有效地分配给特定的加扰因子,该因子用于加扰接收器的序列键。为了在有限的图像库中实现足够的隐写能力,加扰序列的所有子串都具有隐藏数据的潜力。完成秘密信息匹配后,将从数据库中获得理想数量的stego图像。实验结果表明,该技术在数据负载、传输安全性、隐藏能力等方面优于以往大多数工作。在典型的几何攻击下,它平均可以恢复79.85%的秘密信息。此外,只需要大约 200 个随机图像即可满足每个图像 19 位的容量。

2024-04-11

基于深度学习的综合感知与通信系统中的目标-用户关联

在集成传感和通信 (ISAC) 系统中,将雷达目标与通信用户设备 (UE) 相匹配可用于多种通信任务,例如主动切换和波束预测。在本文中,我们考虑了一种雷达辅助通信系统,其中基站(BS)配备了具有双重目标的多输入多输出(MIMO)雷达:(i)将车载雷达目标与通信波束空间中的车载设备(VE)相关联,以及(ii)根据雷达数据预测每个VE的波束成形矢量。建议的目标用户 (T2U) 关联包括两个阶段。首先,从距角图像中检测车辆雷达目标,并估计每个目标的波束成形矢量。然后,将推断出的每目标波束成形矢量与BS上用于通信的波束成形矢量进行匹配,以执行目标到用户(T2U)关联。通过修改“只看一次”(YOLO)模型,在模拟的距离角度雷达图像上进行训练,从而获得联合多目标检测和波束推理。不同城市车辆出行情景下的仿真结果表明,所提T2U方法提供了随BS天线阵列尺寸增加而增加的正确关联概率,突出了波束空间中VE可分离性的相应增加。此外,我们表明,改进后的YOLO架构可以有效地进行波束预测和雷达目标检测,在不同天线阵列尺寸下,后者的平均精度相似。

2024-04-11

使用基于YOLO的学习方法对农业进行实时目标检测和机器人操作

优化普通种植作物的作物收获过程对于农业产业化的目标具有重要意义。如今,机器视觉的利用使农作物的自动识别成为可能,从而提高了收割效率,但挑战仍然存在。本研究提出了一个新框架,该框架结合了卷积神经网络(CNN)的两个独立架构,以便在模拟环境中同时完成作物检测和收获(机器人操作)的任务。模拟环境中的裁剪图像会进行随机旋转、裁剪、亮度和对比度调整,以创建用于数据集生成的增强图像。“你只看一次”算法框架与传统的矩形边界框一起使用,用于作物定位。随后,所提出的方法通过视觉几何组模型利用获取的图像数据,以揭示机器人操作的抓取位置。

2024-04-11

YOLO-World:实时开放词汇对象检测

You Only Look Once (YOLO) 系列探测器已成为高效实用的工具。但是,它们对预定义和训练对象类别的依赖限制了它们在开放场景中的适用性。为了解决这一局限性,我们引入了 YOLO-World,这是一种创新方法,通过视觉语言建模和大规模数据集的预训练,增强了 YOLO 的开放词汇检测功能。具体而言,我们提出了一种新的可重新参数化的视觉-语言路径聚合网络(RepVL-PAN)和区域-文本对比损失,以促进视觉和语言信息之间的交互。我们的方法擅长以零射程、高效率检测各种物体。在具有挑战性的 LVIS 数据集上,YOLO-World 在 V100 上以 52.0 FPS 实现了 35.4 AP,在准确性和速度方面都优于许多最先进的方法。此外,经过微调的 YOLO-World 在多个下游任务上取得了出色的性能,包括对象检测和开放词汇实例分割。

2024-04-11

基于YOLO的红外小目标检测范式

在计算机视觉中,检测红外图像中从小到小的目标是一项具有挑战性的任务,尤其是在将这些目标与嘈杂或有纹理的背景区分开来时。与分割神经网络相比,YOLO 等传统目标检测方法难以检测微小目标,导致检测小目标时性能较弱。为了在保持高检测率的同时减少误报的数量,我们引入了反之亦然YOLO检测器训练的决策标准。后者利用了出乎意料的小目标,以区分他们与复杂背景。将这一统计标准添加到YOLOv7-tine中,弥合了用于红外小目标检测和目标检测网络的最先进的分割方法之间的性能差距。它还显著提高了YOLO在少镜头设置下的鲁棒性。

2024-04-11

使用YOLO v7在磁共振成像中检测肾脏

简介 本研究探讨了使用最新的 You Only Look Once (YOLO V7) 物体检测方法,通过训练和测试医学图像格式上的改进 YOLO V7,来增强医学成像中的肾脏检测。方法 研究纳入878例肾细胞癌(RCC)不同亚型患者和206例肾脏正常患者。共检索到1084例患者的5657次MRI扫描。从回顾性维护的数据库中招募了 326 名患者,涉及 1034 个肿瘤,并在他们的肿瘤周围绘制了边界框。在 80% 的注释案例上训练了主要模型,其中 20% 用于测试(主要测试集)。然后使用最佳主要模型来识别其余 861 名患者的肿瘤,并使用该模型在他们的扫描中生成边界框坐标。创建了 10 个基准训练集,其中包含未分段患者的生成坐标。用于预测主要测试集中肾脏的最终模型。我们报告了阳性预测值(PPV)、灵敏度和平均精密度(mAP)。结果 初级训练集的平均PPV为0.94 +/- 0.01,灵敏度为0.87 +/- 0.04,mAP为0.91 +/- 0.02。最佳主要模型的 PPV 为 0.97,灵敏度为 0.92,mAP 为 0.95。最终模型的平均 PPV 为 0.95 +/- 0.03

2024-04-11

YOLO-CIANNA:在无线电数据中进行深度学习的星系检测 I. 一种受YOLO启发的新型源检测方法应用于SKAO SDC1

即将到来的平方公里阵列(SKA)将为天文仪器产生的数据量设定一个新标准,这可能会挑战广泛采用的数据分析工具,这些工具无法与数据大小进行充分扩展。本研究旨在通过应用现代深度学习目标检测技术,为海量射电天文数据集开发一种新的源检测和表征方法。这些方法已经证明了它们在复杂的计算机视觉任务中的效率,我们试图确定它们在应用于天文数据时的具体优势和劣势。我们介绍了YOLO-CIANNA,这是一款专为天文数据集设计的高度定制的深度学习目标探测器。本文介绍了该方法,并描述了解决射电天文图像特定挑战所需的所有低级适应。我们使用来自 SKAO SDC1 数据集的模拟 2D 连续体图像演示了这种方法的功能。我们的方法优于特定 SDC1 数据集上所有其他已发表的结果。使用 SDC1 指标,我们将挑战获胜分数提高了 +139\%,将唯一其他挑战后参与的分数提高了 +61\%。我们的目录的检测纯度为 94%,同时检测的来源比以前的最高分结果多 40 至 60%。经过训练的模型还可以强制在后处理中达到 99% 的纯度,并且仍然比其他高分方法多检测 10% 到 30% 的来源。它还能够实时检测,在单个 GPU 上每秒

2024-04-11

深度学习 国际象棋游戏数据集

数据集介绍 数据介绍 这是从Lichess.org网站上的精选用户那里收集的20,000多个游戏的集合,以及如何收集更多游戏。将来,我还会收集更多游戏。 内容范围 游戏编号; 额定(T / F); 开始时间; 时间结束; 转弯数量; 游戏状态; 优胜者; 时间增量; 白色玩家编号; 白人球员等级; 黑人玩家ID; 黑人球员等级; 标准象棋符号的所有动作; 开放的生态(任何给定开口的标准化代码,在此处列出); 开幕名称; 开启层(开启阶段的移动次数) 探索方向 单个国际象棋游戏中包含许多信息,更不用说多个游戏的完整数据集了。它主要是一种模式游戏,而数据科学就是要检测数据模式,这就是为什么国际象棋是过去在AI领域投入最多的原因之一。该数据集收集了20,000个游戏中可用的所有信息,并以易于处理的格式进行了分析,例如,分析了允许玩家以黑白棋获胜的方式,多少元(游戏外)影响游戏的因素,黑白与空缺与胜利之间的关系等等。

2024-07-31

深度学习行人检测数据集

行人检测的图片,内置10000张行人图像,1000张骑自行车图像,1000张骑车图像。

2024-07-31

Kolektor:表面缺陷数据集

该数据集是Kolektor Group收集并标注的电子换向器缺陷数据集。数据集中包含了50种编写的电子换向器,每种有8张图片以及其语义分割的label。图像的大小为500×1240像素。 数据集介绍 该数据集是Kolektor Group收集并标注的电子换向器缺陷数据集。数据集中包含了50种编写的电子换向器,每种有8张图片以及其语义分割的label。图像的大小为500×1240像素。 数据集包括: 399幅图片:52幅可见缺陷图像、347幅图像无任何缺陷 尺寸的原始图像:宽度:500 px,高度:1240至1270 px 对于训练和评估,图像应该调整到512 x 1408 px。 对于每个项目,缺陷仅在至少一个图像中可见,而两个项目在两个图像上有缺陷,这意味着有52个图像中的缺陷是可见的。其余347幅图像作为无缺陷表面的负面例子.

2024-07-31

第25章 存贮论.pdf

第25章 存贮论

2024-05-14

第30章 偏最小二乘回归.pdf

第30章 偏最小二乘回归

2024-05-14

第28章 灰色系统理论及其应用.pdf

第28章 灰色系统理论及其应用

2024-05-14

第21章 目标规划.pdf

第21章 目标规划

2024-05-14

第23章 现代优化算法.pdf

第23章 现代优化算法

2024-05-14

第19章 神经网络模型.pdf

第19章 神经网络模型

2024-05-14

第16章 差分方程模型.pdf

第16章 差分方程模型

2024-05-14

第13章 微分方程建模.pdf

第13章 微分方程建模

2024-05-14

第12章 回归分析.pdf

第12章 回归分析

2024-05-14

第14章 稳定状态模型.pdf

第14章 稳定状态模型

2024-05-14

第11章 方差分析.pdf

第11章 方差分析

2024-05-14

第07章 对策论.pdf

第07章 对策论

2024-05-14

第08章 层次分析法.pdf

第08章 层次分析法

2024-05-14

第09章 插值与拟合.pdf

第09章 插值与拟合

2024-05-14

第04章 动态规划.pdf

第04章 动态规划

2024-05-14

第06章 排队论.pdf

第06章 排队论

2024-05-14

第05章 图与网络.pdf

第05章 图与网络

2024-05-14

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除