- 博客(4435)
- 资源 (222)
- 问答 (1)
- 收藏
- 关注
原创 YOLOv8/v10/v11/v12 百大项目实战专栏目录
在众多目标检测算法中,YOLO(You Only Look Once) 凭借其卓越的速度与精度平衡,始终屹立于技术浪潮之巅。特别是Ultralytics公司推出的YOLOv8、以及未来可期的v10、v11、v12,以其更加友好的设计、更强大的性能和更灵活的部署方案,成为了开发者、研究员和工程师们实现视觉AI应用的首选框架。
2025-08-26 17:10:21
912
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离学生课堂行为识别检测系统(DeepSeek智能分析+web交互界面)
本项目旨在研发一个基于先进YOLO系列目标检测算法(YOLOv8/v10/v11/v12)与SpringBoot框架的前后端分离式学生课堂行为智能识别与分析系统。系统通过深度学习技术,自动识别学生在课堂上的多种典型行为,如举手、阅读、书写、使用手机、低头、趴桌等。系统提供Web交互界面,支持用户管理、多种检测模式(图像、视频、实时摄像头)、模型动态切换、数据可视化以及集成DeepSeek智能分析功能。所有识别记录与用户数据均持久化存储于MySQL数据库,为课堂教学质量评估与学生专注度分析提供了高效、智能的解
2025-11-15 20:01:21
702
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离花生种子霉变识别检测系统(DeepSeek智能分析+web交互界面)
本项目旨在开发一个基于深度学习与Web技术的前后端分离式花生种子霉变智能识别与检测系统。系统核心采用先进的YOLOv8/v10/v11/v12系列目标检测模型,对花生种子图像进行高效、精准的二分分类(‘with mold’ 霉变 / ‘without mold’ 正常)。后端使用SpringBoot框架构建RESTful API,前端提供友好的Web交互界面,实现了用户管理、多模态检测(图像、视频、实时摄像头)、AI分析结果可视化与数据管理等功能。创新性地集成DeepSeek智能分析以增强检测能力,并将所有
2025-11-13 22:43:43
706
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离香蕉成熟度识别检测系统(DeepSeek智能分析+web交互界面)
本项目旨在设计并实现一个基于深度学习与Web技术的香蕉成熟度智能识别与检测系统。系统核心采用前沿的YOLO系列目标检测模型(包括YOLOv8, v10, v11, v12),实现对香蕉图像的快速、精准成熟度分类。后端使用SpringBoot框架构建RESTful API,前端与后端分离,提供友好的Web交互界面。系统集成了用户认证、多模型切换、多种检测模式(图像、视频、实时摄像头)、检测记录管理、数据可视化以及管理员后台等完整功能。通过结合DeepSeek等AI分析能力,该系统不仅是一个高效的计算机视觉应用
2025-11-11 14:58:39
1169
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离疲劳驾驶识别检测系统(DeepSeek智能分析+web交互界面)
本项目旨在设计并实现一个基于YOLO系列深度学习模型与SpringBoot框架的前后端分离式疲劳驾驶识别检测系统。系统致力于通过非接触式视觉分析,解决道路交通安全中的关键隐患——疲劳驾驶。项目核心采用包括YOLOv8至v12在内的多种先进目标检测算法,对包含4个类别(闭眼、睁眼、打哈欠、非哈欠)、共计超过16,000张标注图像的数据集进行训练,以实现对驾驶员疲劳状态的精准、实时识别。
2025-11-11 10:19:23
893
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离昆虫识别检测系统(DeepSeek智能分析+web交互界面)
系统核心采用了一系列先进的YOLO模型(涵盖YOLOv8至最新的YOLOv12),确保了检测算法在精度与速度上的前沿性。同时,我们创新性地集成了DeepSeek大语言模型的AI分析能力,使系统不仅能“识别”昆虫,更能“理解”和“解读”检测结果,提供专业的分析洞察。通过SpringBoot构建的后端API和响应式的前端界面,系统实现了用户管理、多模态检测(图像、视频、实时摄像头)、数据可视化与记录管理等全套功能,为农业技术人员、科研工作者及广大农户提供了一个强有力的数字化工具。
2025-11-05 09:46:36
774
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离杂草识别检测系统(DeepSeek智能分析+web交互界面)
本系统是一个深度融合了当代最前沿的深度学习目标检测技术、大语言模型分析能力与现代企业级Web开发框架的综合型智能应用平台。系统以高性能、可迭代的YOLO系列模型(涵盖v8, v10, v11, v12) 作为其核心的视觉感知引擎,专门用于对特定杂草物种—— 进行高精度、高效率的识别与定位。通过基于SpringBoot的鲁棒后端架构,系统构建了一套完整的用户认证、数据管理,并辅以清晰明了的响应式前端交互界面,最终为用户提供了一个集多模态检测、智能分析、数据可视化、记录管理与系统管理于一体的一站式杂草防控决策支
2025-11-03 10:08:12
1030
1
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离口罩佩戴识别检测Web系统(DeepSeek智能分析)
口罩检测系统的突出特点在于其高度的灵活性与技术前瞻性。它不仅支持从YOLOv8到YOLOv12等多种版本的模型一键切换,允许用户根据不同的精度与速度需求选择最佳模型,还创新性地集成了DeepSeek大语言模型,为检测结果提供更智能、更人性化的分析描述,超越了传统的单纯框选与分类。从功能完整性来看,系统涵盖了从用户登录注册、个人中心管理,到多媒体文件(图片、视频、实时流)检测,再到检测记录管理与后台用户管理的全流程,并提供了丰富的数据可视化看板。同时,个性化的UI设置(如导航栏颜色更换)进一步提升了用户体验。
2025-10-31 22:34:30
928
原创 基于YOLOv8/v10/v11/v12与SpringBoot的前后端分离火灾检测Web系统(DeepSeek智能分析)
本文设计并实现了一套基于YOLOv8/v10/v11/v12算法与SpringBoot框架的前后端分离火灾检测Web系统。系统旨在通过深度学习技术,实现对火灾早期特征——火焰('fire')与烟雾('smoke')——的精准、实时识别。项目采用自建数据集,包含6,744张高质量标注图像(训练集4,832张、验证集1,000张、测试集912张),确保了模型的鲁棒性。系统核心提供了一个集用户管理、实时视频流检测、识别结果管理与可视化分析于一体的综合性Web平台,DeepSeek智能分析给出预防措施,有效解决了传
2025-10-26 11:13:35
1538
1
原创 基于深度学习YOLOv11的吸烟识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本项目旨在开发一个基于YOLOv11架构的高精度、实时吸烟行为检测系统。系统通过对监控画面或图像进行端到端的分析,能够精准识别并定位五种关键目标:香烟(Cigarette)、人(Person)、烟雾(Smoke)、电子烟(Vape) 以及综合性的吸烟行为(smoking)。该模型在包含超过12,000张标注图像的数据集上进行了充分训练,展现出强大的特征学习与泛化能力。此类技术可广泛应用于安全生产监控、公共场所禁烟监管、智能安防等领域,为自动化违规行为识别提供有效的技术解决方案,助力实现智能化管理。
2025-10-18 09:45:50
988
1
原创 基于深度学习YOLOv12的犬种识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本项目旨在开发一个基于YOLOv12目标检测模型的犬种自动识别系统。系统能够实时地检测图像或视频中的犬只,并精准地识别出其所属的6种特定犬种,包括比格犬、斗牛犬、柯基犬、金毛寻回犬、哈士奇和博美犬。YOLOv12作为YOLO系列的最新迭代,以其卓越的检测速度与精度,为本系统提供了强大的技术基础,使其非常适合于宠物管理、智能安防、宠物丢失寻找以及图像内容自动化标注等实际应用场景。
2025-10-18 09:45:05
784
原创 基于深度学习YOLOv11的犬种识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
项目核心采用了先进的YOLOv11模型,该模型在速度和精度之间实现了优异的平衡,非常适合实际部署应用。系统经过一个总量为1257张图像的专业数据集进行训练与优化,最终在独立的测试集上达到了良好的性能指标,平均精度(mAP)和召回率(Recall)均表现优异。该成果可广泛应用于宠物智能管理、宠物社区应用、动物研究以及智能安防监控等领域,为自动化犬种识别提供了高效、可靠的技术解决方案。
2025-10-18 09:44:34
803
原创 基于深度学习YOLOv11的疲劳驾驶识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本项目基于YOLOv11目标检测算法,开发了一套用于实时监测驾驶员疲劳状态的智能系统。该系统能够通过车载摄像头实时捕捉驾驶员面部图像,并精准识别其处于“清醒”或“疲劳”状态。经过在自定义数据集上的充分训练与验证,模型表现出优异的性能,能够有效检测出闭眼、点头、瞌睡等关键疲劳特征。本系统的最终目标是作为高级驾驶辅助系统(ADAS)的核心模块,及时发出预警,从而显著降低因疲劳驾驶引发的交通事故风险,提升道路安全。
2025-10-18 09:44:01
664
原创 基于深度学习YOLOv12的疲劳驾驶识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文介绍了一个基于YOLOv12目标检测算法的疲劳驾驶监测系统。该系统旨在通过实时分析驾驶员面部图像,自动识别其疲劳状态,分为“清醒”和“疲劳”两类,从而为驾驶安全提供有效的技术保障。YOLOv12作为最新的高性能检测模型,兼具速度快、精度高的优点,非常适合部署在车载设备或边缘计算终端上进行实时预警。实验结果表明,本系统在自建数据集上取得了良好的性能,能够有效区分驾驶员的疲劳状态,为预防因疲劳驾驶引发的交通事故提供了可靠的解决方案。
2025-10-18 09:43:30
357
原创 基于深度学习YOLOv12的骑手佩戴头盔检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文介绍了一个基于先进目标检测模型YOLOv12的骑手佩戴头盔智能检测系统。该系统旨在对交通场景中的摩托车骑手进行实时、精准的检测与识别,核心功能包括:检测摩托车骑手(motorcyclist)、判断其是否按规定佩戴安全头盔(helmet),并同时识别其车辆牌照(license_plate)。该系统共检测3个目标类别,在自构建的数据集上进行了充分的训练与验证。实验结果表明,该系统能够有效应对复杂道路环境,具备高准确率和良好的鲁棒性,可广泛应用于交通执法、智慧城市管理和安全监控等领域,为提升道路交通安全水平提
2025-10-18 09:42:58
399
原创 基于深度学习YOLOv11的骑手佩戴头盔检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文介绍了一个基于YOLOv11目标检测算法的骑手佩戴头盔智能检测系统。该系统旨在对道路交通场景中的摩托车骑手进行实时监测与识别,核心功能是准确检测并区分三类目标:佩戴头盔的骑手(helmet)、未佩戴头盔的骑手(motorcyclist) 以及摩托车车牌(license_plate)。该系统对于提升交通执法效率、促进骑手安全驾驶、降低交通事故伤亡率具有重要的实际应用价值。通过在一个精心构建的数据集上进行训练与验证,模型实现了较高的检测精度与鲁棒性,能够有效应对复杂道路环境下的检测挑战。
2025-10-18 09:42:26
925
原创 基于深度学习YOLOv12的吸烟识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文介绍了一个基于先进目标检测算法YOLOv12构建的高精度吸烟行为检测系统。该系统旨在实时识别和定位多种与吸烟相关的目标,包括香烟(Cigarette)、人物(Person)、烟雾(Smoke)、电子烟(Vape)以及整体的吸烟行为(smoking)。通过精准检测这些细粒度目标,系统能够有效判断场景中是否存在吸烟行为,并可进一步分析行为的具体细节(如使用传统香烟还是电子烟)。本系统在构建的大规模、高质量数据集上进行训练与验证,该数据集包含超过12,000张标注图像,覆盖了多种复杂场景。实验结果表明,该系统
2025-10-18 09:41:52
621
原创 基于深度学习YOLOv11的火箭识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本项目基于前沿的YOLOv11目标检测算法,开发了一个高性能的火箭多部件检测系统。系统能够精准识别并定位火箭发射过程中的三个关键组成部分:发动机火焰(Engine Flames)、火箭箭体(Rocket Body) 以及Space。通过对大规模、高质量的自定义数据集进行充分训练,模型在复杂多变的场景下(如不同光照条件、天气、火箭姿态及发射阶段)均表现出优异的检测精度与鲁棒性。该系统可广泛应用于航天发射的实时监测、视频资料自动分析、飞行器状态评估及航天科普教育等领域,为航天活动提供自动化的视觉感知技术支持。
2025-10-18 09:41:17
815
原创 基于深度学习YOLOv12的火箭识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本项目旨在开发一个基于先进目标检测模型YOLOv12的火箭部件智能识别系统。该系统能够精准、实时地检测并识别图像或视频流中的三个关键类别:发动机火焰(Engine Flames)、火箭箭体(Rocket Body) 和(Space)。通过在大规模、高质量的数据集上进行训练与验证,该模型展现出强大的特征提取能力和优异的泛化性能,能够有效应对太空环境下目标尺度多变、背景复杂等挑战。本系统可广泛应用于航天发射监测、在轨航天器状态分析、太空碎片追踪等多个航天领域,为自动化、智能化的太空态势感知提供核心技术支持。
2025-10-18 09:40:46
745
原创 基于深度学习YOLOv11的船舶分类检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本项目基于先进的YOLOv11目标检测算法,开发了一套高效、精准的船舶图像分类与检测系统。该系统能够对输入图像或视频中的船舶目标进行实时定位(Bounding Box)并准确分类为五大特定类别:集装箱船(Container Ship)、邮轮(Cruise Ship)、军用船舶(Military Ship)、滚装船(RORO)以及油轮(Tanker)。YOLOv11作为YOLO系列的最新迭代,其在检测速度与精度上的优异平衡,使其非常适合于海事监控、港口管理、航运物流等对实时性要求较高的应用场景。本系统的成功构
2025-10-18 09:40:08
1097
原创 基于深度学习YOLOv12的固体垃圾废物识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本项目旨在开发一个基于前沿目标检测模型YOLOv12的固体废物自动识别系统。系统专注于对两种最常见的可回收物——瓶类(Bottle) 和 罐类(Cans) 进行高精度、实时的检测与定位。通过对包含近8000张图像的数据集进行模型训练与优化,该模型能够有效学习瓶罐类废物的视觉特征,为后续的自动化垃圾分类、回收流程提供核心的视觉感知能力,是推动智慧环保和城市垃圾智能化管理的关键技术实践。
2025-10-18 09:39:35
585
原创 基于深度学习YOLOv11的固体废物识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本研究基于先进的YOLOv11目标检测算法,开发了一套高效、准确的固体废物智能识别与检测系统。该系统专门针对可回收物中的两类关键目标——“瓶子”(Bottle)和“罐子”(Cans”)进行优化,旨在为智能垃圾分类、自动化回收分拣等环保应用提供核心技术支持。通过利用深度学习技术,该系统能够实时处理图像或视频流,快速定位并精确分类视野中的废物目标,显著提升了废物分拣的效率和自动化水平,对推动城市固体废物的资源化利用具有重要意义。
2025-10-18 09:39:11
984
原创 基于深度学习YOLOv12的船舶类型识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本项目基于先进的YOLOv12目标检测算法,开发了一套高性能的船舶图像分类与检测系统。该系统能够精准地识别和定位图像或视频流中的船舶,并将其自动分类为五大特定类别:集装箱船(Container Ship)、邮轮(Cruise Ship)、军用船舶(Military Ship)、滚装船(RORO) 和 油轮(Tanker)。YOLOv12作为YOLO系列的最新迭代,在检测速度与精度上实现了显著提升,使其非常适合于对实时性要求较高的海事监控、港口管理和航运分析等应用场景。本系统通过在海事领域专用数据集上进行充分
2025-10-18 09:37:55
631
原创 基于深度学习YOLOv12的汽车损坏识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本项目基于前沿的目标检测算法YOLOv12,开发了一套高性能的汽车损坏自动识别与检测系统。该系统以单类别(nc: 1)‘Car-Damage’为检测目标,能够精准地定位并识别车辆图像中的损坏区域,如剐蹭、凹陷、破裂等。系统核心在于将先进的YOLO架构与大规模、高质量的专项数据集相结合,通过端到端的训练,实现了对汽车损坏的快速、准确判断。该技术可广泛应用于保险定损、二手车评估、汽车维修智能导流等多个商业场景,旨在通过自动化检测替代传统依赖人工经验的流程,显著提升行业效率与评估的客观性,降低运营成本,是人工智能
2025-10-18 09:37:25
670
原创 基于深度学习YOLOv11的汽车损坏识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本项目基于前沿的YOLOv11目标检测架构,研发了一套高性能的汽车损坏智能识别与检测系统。该系统以精准识别和定位图像或视频中的车辆损伤区域为核心目标,专注于“Car-Damage”这一单一类别进行深度优化,能够有效应对各种复杂环境下的检测需求。通过集成深度学习与计算机视觉技术,该方案旨在为汽车保险快速定损、事故现场自动化勘查、以及二手车交易评估等实际应用场景,提供高效、可靠且可落地的智能化技术工具,显著提升相关行业的作业效率与准确性。
2025-10-18 09:36:53
886
原创 基于深度学习YOLOv12的蜜蜂识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
我们采用最新的YOLOv12模型进行训练,该模型在精度和速度上相比前代YOLO系列有显著提升,能够快速准确地从复杂自然背景中定位并识别出蜜蜂个体。最终训练所得的模型在测试集上达到了较高的平均精度(mAP)89.1%,展现出优异的性能。此外,本项目还开发了一个完整的用户交互界面(UI),集成了用户登录注册、图像/视频上传、实时检测,极大提升了系统的易用性和实用性。该系统为蜂群自动化监测提供了一套高效、可靠的端到端解决方案,具有良好的应用前景和推广价值。
2025-10-18 09:36:20
1021
原创 基于深度学习YOLOv11的蜜蜂识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文设计并实现了一个基于深度学习目标检测算法YOLOv11的蜜蜂识别与检测系统。该系统旨在应对现代农业和生态研究中对于蜜蜂种群进行高效、自动化监测的需求。项目采用了一个大规模、高质量的定制蜜蜂图像数据集,该数据集包含总计8078张图像,其中训练集5640张、验证集1604张、测试集836张,所有图像均精细标注,仅包含‘bees’一个类别(nc: 1),确保了模型训练的专注度和准确性。
2025-10-18 09:35:45
870
原创 基于深度学习YOLOv12的数字字母识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文设计并实现了一种基于YOLOv12深度学习模型的字母数字识别检测系统,该系统能够高效准确地检测并识别图像中的36类字符(包括数字0-9和字母A-Z)。系统采用YOLOv12作为核心检测框架,结合自定义的YOLO格式数据集进行训练和优化,训练集包含4245张图像,验证集1221张,测试集610张。此外,系统配备了用户友好的UI界面,支持登录注册功能。实验结果表明,该系统在测试集上表现出较高的检测精度和鲁棒性,能够满足实际场景中字母数字识别的需求。本文详细介绍了系统架构、数据集构建、模型训练及界面设计,并提
2025-10-18 09:35:04
952
原创 基于深度学习YOLOv11的字母数字识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文提出了一种基于深度学习YOLOv11的字母数字识别检测系统,旨在实现高效、准确的字符检测与识别。该系统采用改进的YOLOv11算法,结合包含36类字母数字(0-9, A-Z)的YOLO格式数据集进行训练,数据集规模为训练集4245张、验证集1221张、测试集610张。系统设计包含用户友好的UI界面,支持登录注册功能,并通过Python实现完整的项目部署。实验结果表明,该系统在复杂场景下具有较高的检测精度与鲁棒性,可广泛应用于车牌识别、文档自动化处理等领域。本文详细介绍了算法优化、数据集构建、系统设计及性
2025-10-18 09:34:31
822
原创 基于深度学习YOLOv12的猫狗品种识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
项目构建了一个包含37个猫狗品种的大规模定制数据集(nc=37),共计13,983张标注图像。系统后端基于PyTorch深度学习框架进行模型训练与优化,前端则开发了用户友好的图形化界面(UI),集成了登录注册、图像上传、实时检测、结果可视化。实验结果表明,最终训练所得的模型在独立测试集上达到了优异的平均精度(mAP)95.1%,验证了该系统在实际应用中的有效性与可靠性。本项目为宠物识别、智能安防、动物学研究等领域提供了一个功能完备的技术解决方案和工程实践参考。
2025-10-18 09:33:58
406
原创 基于深度学习YOLOv11的猫狗品种识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文提出了一种基于深度学习YOLOv11的猫狗品种识别检测系统,该系统能够高效、准确地识别37种猫狗品种。通过构建包含13,983张图像的数据集(训练集12,879张、验证集736张、测试集368张),结合YOLOv11目标检测算法,实现了对复杂场景下多品种猫狗的实时检测与分类。系统采用Python开发,集成用户友好的UI界面,支持登录注册功能。实验结果表明,该系统在测试集上达到了较高的识别精度与鲁棒性,可为宠物管理、智能安防等领域提供技术支持。
2025-10-18 09:33:22
771
原创 基于深度学习YOLOv12的药物识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
药物识别在医疗安全和药品管理中具有重要意义。本文提出了一种基于深度学习YOLOv12的药物识别检测系统,能够高效准确地识别8类常见药物(包括Cipro 500、Ibuphil 600 mg等)以及不同颜色(蓝色、粉色、红色、白色)的药片。系统结合YOLOv12算法的高精度检测能力,并集成用户友好的UI界面和登录注册功能。实验结果表明,该系统在自定义YOLO数据集上表现优异,平均精度(mAP)98%达到较高水平,能够满足实际场景中对药物快速识别的需求。此外,系统提供了完整的Python项目源码和预训练模型,便
2025-10-17 15:14:24
656
原创 基于深度学习YOLOv11的药物识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
药物识别在医疗保健和药品管理中具有重要意义,但传统方法效率低且易出错。本文提出一种基于深度学习YOLOv11的药物识别检测系统,能够高效准确地识别8类常见药物(包括Cipro 500、Ibuphil 600 mg等)和颜色特征(红、蓝、粉、白)。系统结合YOLOv11算法的高性能检测能力,并集成用户友好的UI界面与登录注册功能。实验表明,该系统在自定义YOLO数据集上表现优异,平均精度(mAP)达98.6%以上,显著提升了药物识别的自动化水平。本项目的Python源码与预训练模型可为医疗智能化应用提供参考。
2025-10-17 15:13:50
877
原创 基于深度学习YOLOv12的工地运输车识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文设计并实现了一种基于YOLOv12深度学习算法的工地运输车智能识别检测系统,旨在提升工地车辆管理的自动化水平与安全性。系统针对三类常见工程车辆(挖掘机、自卸卡车、轮式装载机)进行目标检测,采用包含2244张训练图像、267张验证图像和144张测试图像的YOLO格式数据集进行模型训练与评估。通过集成用户友好的UI界面及登录注册功能,满足实际工地场景的应用需求。实验结果表明,该系统在复杂工地环境下具有较高的检测精度与实时性,为工程车辆监控、作业调度及安全预警提供了有效的技术解决方案。
2025-10-17 15:13:20
677
原创 基于深度学习YOLOv11的工地运输车识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文提出了一种基于深度学习YOLOv11的工地运输车智能识别检测系统,旨在实现对施工现场常见运输车辆(包括挖掘机、自卸卡车和轮式装载机)的高精度实时检测。系统采用改进的YOLOv11算法,结合YOLO格式数据集(包含训练集2244张、验证集267张和测试集144张图像)。此外,系统集成了用户友好的UI界面,支持登录注册功能。实验结果表明,该系统在测试集上达到了较高的检测准确率(mAP@0.5为93.2%),能够有效满足工地车辆智能化管理的需求。本文详细介绍了系统架构、算法实现及交互设计,并提供了完整的Pyt
2025-10-17 15:12:47
868
原创 基于深度学习YOLOv12的车辆类型识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文基于YOLOv12深度学习框架,设计并实现了一个高效的车辆类型识别检测系统,支持对公交车(bus)、小汽车(car)、摩托车(motorbike)和卡车(truck)四类目标的实时检测。系统采用包含1000张标注图像的自建数据集(训练集750张、验证集100张、测试集150张),通过数据增强和迁移学习优化模型性能,平均精度(mAP)达到92.3%。此外,系统集成了用户友好的UI界面,包含登录注册功能。本文提供了完整的Python项目源码、预训练模型及部署方案,为智能交通领域的应用开发提供了参考。
2025-10-17 15:12:13
732
原创 基于深度学习YOLOv11的车辆类型识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文提出了一种基于深度学习YOLOv11的车辆类型识别检测系统,能够高效准确地检测和分类四种常见车辆类型(公交车、小汽车、摩托车、卡车)。系统采用YOLOv11目标检测算法,结合YOLO格式的标注数据集进行训练和验证,实现了较高的检测精度和实时性能。此外,系统配备了用户友好的UI界面,支持登录和注册功能。实验结果表明,该系统在测试集上达到了良好的识别效果,可为智能交通管理、车辆监控等应用提供可靠的技术支持。
2025-10-17 15:11:48
969
原创 基于深度学习YOLOv12的安全锥识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文基于YOLOv12深度学习框架,设计并实现了一套高效的安全锥识别检测系统。该系统通过集成YOLOv12算法、定制化的YOLO数据集(包含训练集5960张、验证集341张和测试集170张)以及用户友好的UI界面,实现了对安全锥目标的实时精准检测。系统还配备了登录注册功能。实验结果表明,该系统在准确率、召回率和实时性方面均表现出色,可广泛应用于道路施工、交通管理等领域,为安全防护提供智能化解决方案。
2025-10-17 15:10:06
792
原创 基于深度学习YOLOv11的安全锥识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文提出了一种基于深度学习的目标检测系统,采用YOLOv11算法实现安全锥的高效识别与检测。系统以YOLOv11为核心,结合包含5960张训练集、341张验证集和170张测试集的标注数据集进行模型训练与优化,实现了高精度的安全锥检测。此外,系统集成用户友好的UI界面,支持登录注册功能。实验结果表明,该系统在复杂环境下仍能保持较高的检测准确率和实时性,可广泛应用于道路施工、交通管理等领域。本文详细介绍了系统架构、数据集构建、模型训练及界面设计,并提供了完整的Python项目源码与预训练模型,为相关研究提供了可
2025-10-17 15:09:34
1004
数学建模的29个通用模型及matlab解法.zip
2024-05-14
yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件
2024-05-09
Squeezed Edge YOLO:边缘设备上的板载对象检测
2024-04-11
奥地利自动驾驶深度学习视觉模型YOLO和DETR的首次定性观察
2024-04-11
使用YOLO从SDSS图像中检测到边缘低表面亮度星系候选星系
2024-04-11
yolo使用TomFormer及早准确检测番茄叶病
2024-04-11
YOLOv7无人机实时探测人体
2024-04-11
使用 YOLO 对牛栏编号进行分类
2024-04-11
使用 YOLOv7 和 ESRGAN 改进坑洼检测
2024-04-11
基于YOLO的动态序列匹配模型,实现高效的无覆盖图像隐写
2024-04-11
使用YOLO v7在磁共振成像中检测肾脏
2024-04-11
YOLO-CIANNA:在无线电数据中进行深度学习的星系检测 I. 一种受YOLO启发的新型源检测方法应用于SKAO SDC1
2024-04-11
具有混合注意力特征金字塔网络的YOLO算法,用于焊点缺陷检测
2024-04-11
DiffYOLO:通过YOLO和扩散模型进行抗噪声目标检测
2024-04-11
YOLO-Former:YOLO与ViT握手
2024-04-11
基于深度学习的综合感知与通信系统中的目标-用户关联
2024-04-11
使用基于YOLO的学习方法对农业进行实时目标检测和机器人操作
2024-04-11
YOLO-World:实时开放词汇对象检测
2024-04-11
基于YOLO的红外小目标检测范式
2024-04-11
深度学习 国际象棋游戏数据集
2024-07-31
Kolektor:表面缺陷数据集
2024-07-31
C++开发实用教程最好的
2024-03-14
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅