自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1146)
  • 资源 (35)
  • 收藏
  • 关注

原创 23年 车辆检测+车距检测+行人检测+车辆识别+车距预测(附yolo v5最新版源码)

运用yolov5进行车距检测,车辆识别,行人识别,车牌检测!

2023-01-12 22:41:44 12769 24

原创 2023“华为杯”第二十届中国研究生数学建模竞赛 注意事项

备赛准备:数学能力,了解常用数学模型的适用范围,大致的思想方法以及实现步骤,做到比赛的时候能够迅速地知道能用什么模型来做,以及大概需要多少时间来搞定。8、模型假设,问题分析,模型建立,问题求解过程一定要详细完整(例如:如何调整参数等),切忌只有结果。一定要在论文中体现团队的工作量,包括调节算法参数的过程,只写结果在评分中有很大的劣势。每队三人,分工协作完成,1人负责建模,1人负责编程,1人负责撰写论文、组织分析问题等。2、论文别等到最后再写,边做边写,图标清晰,摘要最后写,反复检查。下午解决第一小问题。

2023-09-19 21:55:31 32

原创 “华为杯”第二十届中国研究生数学建模竞赛开赛公告

赛题中有明确要求上传附件或赛题虽然无明确要求,但参赛队伍认为上传附件有利于评审专家理解本参赛队研究成果的,并在论文正文中注明上传了附件,参赛队伍可在2023年9月28日8:00—9月29日24:00期间在系统上上传程序、计算结果等论文附件的压缩包,压缩包命名格式为:参赛试题编号+队伍编号,如*23000010001.rar,其中*为参赛试题编号,用A、B、C、D、E、F表示。2.论文命名格式:参赛试题编号+队伍编号,如*23000010001.pdf,其中*为参赛试题编号,用A、B、C、D、E、F表示。

2023-09-19 21:50:29 39

原创 数据清洗:让数据更纯净,Python实战 机器学习&深度学习

数据是机器学习和深度学习的基石,但真实世界中的数据往往是不完美的,包含错误、缺失值和异常值。数据清洗是数据预处理中的关键步骤,旨在使数据更加可靠和适合建模。在本文中,我们将介绍数据清洗的基本概念,并提供Python代码示例,帮助你处理不洁净的数据。

2023-09-19 20:59:05 7

原创 用R语言深度学习实现远程医疗诊断:医疗领域的深度学习应用

远程医疗诊断是医疗领域的一个重要应用领域,它利用深度学习技术来帮助医生进行远程患者诊断和监测。本博客将深入介绍如何使用R语言深度学习技术来实现远程医疗诊断,为医疗领域的深度学习应用提供指南。通过不断测试和改进,我们可以打造一个强大的远程医疗诊断系统,为医疗领域的深度学习应用提供了强大的工具。要构建远程医疗诊断模型,我们需要大量的医疗数据,包括医学图像、生物传感器数据、医学文本等。这个示例创建了一个深度学习模型,用于医疗诊断任务。一旦我们的医疗诊断模型训练完成,我们可以将其应用于实际远程医疗诊断任务。

2023-09-18 12:46:00 12

原创 用R语言深度学习实现多人脸识别与跟踪:视频中的人脸分析技术

视频人脸识别与跟踪是一项复杂的计算机视觉任务,它要求从视频流中检测和跟踪多个人脸的位置和标识。模型的输入是视频帧,输出是每个检测到的人脸的位置坐标。在这个示例中,我们创建了一个人脸检测与跟踪函数,它接受视频帧并返回每一帧中检测到的人脸的跟踪结果。最后,我们需要测试和优化人脸识别与跟踪系统,以确保它能够准确地检测和跟踪视频中的人脸。一旦我们的人脸检测与跟踪模型训练完成,我们可以将其应用于实际视频人脸识别与跟踪任务。构建人脸检测与跟踪模型需要考虑如何使用深度学习模型来检测和跟踪视频中的人脸。

2023-09-18 12:43:50 20

原创 用R语言深度学习实现超级分辨率视频重建:视频质量的未来

超级分辨率视频重建是计算机视觉领域的一项重要研究方向,它旨在将低分辨率视频转化为高分辨率视频,从而提升视频质量。超级分辨率视频重建是一项复杂的计算机视觉任务,它要求从低分辨率视频中恢复出高分辨率视频的细节和清晰度。要构建超级分辨率视频重建模型,我们需要大量的视频数据,包括低分辨率视频和对应的高分辨率视频。在这个示例中,我们创建了一个超级分辨率视频重建函数,它接受低分辨率视频并返回高分辨率视频。我们将使用标记好的视频数据来训练超级分辨率视频重建模型,并使用评估指标来评估模型性能。

2023-09-18 12:42:08 9

原创 用R语言深度学习打造智能自动化内容生成系统:文本创作的未来

自动化内容生成是人工智能领域的一个热门研究方向,它旨在利用深度学习技术来创建自动生成博客文章、新闻报道、小说等文本内容的系统。这个领域的发展已经取得了巨大的进展,为内容创作者和新闻机构提供了强大的工具,以提高创作效率并实现个性化内容生成。通过本博客,我们深入探讨了构建自动化内容生成系统的关键步骤,包括数据准备、文本生成模型的构建,以及自动化内容生成系统的设计和优化。在这个示例中,我们创建了一个自动化内容生成系统函数,它接受一个种子文本和生成文本的长度,并返回生成的文本内容。

2023-09-18 12:39:51 10

原创 用R语言深度学习打造无敌机器人足球队:AI在足球领域的新突破

要构建机器人足球队,我们需要大量的机器人足球数据,包括球场上的位置信息、传球数据、得分情况等。在这个示例中,我们创建了一个机器人足球团队函数,它包含多个机器人球员,每个机器人球员都使用不同的机器人足球战术模型。在这个示例中,我们使用了一个包含机器人足球比赛记录的数据集,包括机器人的位置信息、传球数据和得分情况。一旦我们的机器人足球战术模型训练完成,我们可以将它们整合到机器人足球团队中,以实现协同作战。我们将使用标记好的机器人足球数据来训练机器人足球战术模型,并使用评估指标来评估模型性能。

2023-09-18 12:38:05 15

原创 探索R语言深度学习在智能教育中的应用:个性化学习的未来

它可以根据学生的需求、兴趣和学习风格,为每个学生设计独特的学习路径和提供有针对性的学习建议。学习建议模型可以根据学生的学习历史和兴趣,为他们提供个性化的学习建议。模型的输入包括学生的学习历史和兴趣,输出是不同学习建议的概率分布。个性化学习路径模型旨在根据学生的特征和表现,预测最适合他们的学习路径。一旦我们的个性化学习路径模型和学习建议模型训练完成,我们可以将它们整合到智能教育系统中,以实现个性化学习体验。在这个示例中,我们创建了一个智能教育系统函数,它接受学生数据,预测最佳学习路径和学习建议。

2023-09-18 12:36:28 6

原创 用R语言深度学习构建情感对话机器人:机器的心有灵犀

情感对话机器人是人工智能领域的一个引人注目的研究方向,它的目标是使机器能够理解和生成情感化的对话。通过本博客,我们深入探讨了构建情感对话机器人的关键步骤,包括情感分析、数据准备、模型构建和机器人设计。一旦我们的情感对话模型训练完成,我们可以将其整合到情感对话机器人中。在这个示例中,我们创建了一个情感对话机器人函数,它接受用户输入,通过情感对话模型预测情感,然后生成相应的回应。模型将用于预测对话文本中的情感类别。通过不断测试和反馈,我们可以改进情感对话机器人的性能,使其更适应不同情感和语境的对话。

2023-09-18 12:34:35 8

原创 用R语言深度学习捉拿社交媒体上的虚假信息

虚假信息检测是社交媒体分析中的重要问题,深度学习技术为我们提供了一种强大的工具来解决这一问题。本博客介绍了从理解虚假信息检测的基本概念,到使用R语言深度学习技术构建、训练和评估模型的关键步骤。训练好的虚假信息检测模型可以应用到实际的社交媒体数据中,用于识别虚假信息。在这个示例中,我们使用了一个虚假新闻检测数据集,其中包含了文本数据和相应的标签(0表示真实信息,1表示虚假信息)。虚假信息检测需要大量的文本数据,包括真实信息和虚假信息。这个示例展示了数据的预处理、模型的训练,以及如何评估模型性能。

2023-09-18 12:31:17 5

原创 多模态学习的魅力:用R语言深度学习打破数据界限

多模态学习是一种令人兴奋的深度学习领域,它旨在将这些不同类型的数据结合起来,以进行更综合的分析和决策。本博客将介绍多模态学习的基本概念,并使用R语言深度学习技术来展示如何处理和分析多模态数据。本博客涵盖了从理解多模态学习的基本概念,到使用R语言深度学习工具构建和训练多模态模型的关键步骤。在这个示例中,我们创建了一个多模态模型,将图像模型、文本模型和声音模型连接在一起,然后添加全连接层用于最终的分类任务。在进行多模态学习之前,我们需要准备多种类型的数据,并将它们整合到一个统一的数据集中。

2023-09-18 12:02:02 6

原创 如何使用R语言构建超越人类表现的深度学习模型

从任务定义、数据收集、模型构建、训练、到模型评估和推广,每个步骤都经过详细的解释和示范。超越人类表现需要坚韧不拔的努力和深度学习的熟练掌握,但它代表了深度学习领域的最高追求。在这个充满挑战和机会的时代,我们将探讨如何使用R语言构建一个在某个特定任务上超越人类表现的深度学习模型。要构建一个超越人类表现的模型,需要大量高质量的训练数据。在这个示例中,我们下载了CIFAR-10图像分类数据集,并进行了数据预处理,包括图像归一化和标签的独热编码。一旦模型训练完成,我们需要评估模型的性能,并进行必要的调优。

2023-09-18 12:00:01 7

原创 深度学习与情感生成:用R语言创造真实的情感表达

情感生成是深度学习领域中备受关注的一个领域,它旨在让计算机能够模仿和生成人类的情感表达,如笑声、哭声、愤怒等。本博客将带您进入情感生成的奇妙世界,利用R语言和深度学习技术来探索如何创建逼真的情感表达。从数据收集、模型构建、训练,到生成情感音频,每个步骤都经过详细的解释和示范。生成器将负责生成逼真的情感音频,而判别器将负责区分真实音频和生成的音频。在这里,我们以EmoReact数据集为例,这是一个包含各种情感的音频样本的数据集。情感生成的第一步是获取大量的情感音频数据,这些数据将用于训练深度学习模型。

2023-09-18 11:56:55 7

原创 R语言探索量子计算中的深度学习应用

从量子计算基础、量子机器学习、量子神经网络,到具体的应用场景,我们展示了如何使用R语言和相关库来探索这一领域。在这个示例中,我们使用QiskitR库创建了一个量子回路,将Hadamard门和CNOT门应用于两个量子位,并模拟了回路的执行。这是一个简单的示例,但说明了量子计算在机器学习中的潜力。在这个示例中,我们使用qiskit库创建了一个包含量子位和量子神经层的模型,并进行了编译和训练。在深入探讨深度学习在量子计算中的应用之前,让我们先了解一些量子计算的基础概念。这些操作是量子计算中的基础构建块。

2023-09-18 11:52:56 4

原创 R语言深度学习的魔法声音:语音合成技术的奥秘

语音合成,又称文本到语音(TTS),是一种技术,它可以将文本信息转化为自然语言的语音。通过语音合成,计算机可以模仿人类的语音,使计算机能够与人进行更自然的交互。

2023-09-18 11:50:23 6

原创 R语言利用深度学习构建知识图谱

知识图谱的构建始于数据的收集。在这个示例中,我们将使用深度学习技术来将文本数据转化为向量表示,以便能够在知识图谱中进行关系抽取和实体匹配。现在,我们已经有了实体、关系和它们的向量表示,可以开始构建知识图谱了。在这个示例中,我们使用neo4r库连接到Neo4j数据库,并将知识图谱中的实体和关系添加到数据库中。这段代码将查询知识图谱,查找与"Knowledge graph"实体相关的"importance"关系,并返回相关实体的名称作为答案。识别出的实体和关系将被添加到知识图谱中,为后续的构建提供了基础。

2023-09-18 11:49:49 7

原创 使用R语言深度学习创建逼真的语音合成

从数据收集、预处理、模型构建、训练,到最终的语音合成,每个步骤都经过详细的解释和示范。本博客将带您走进深度学习的世界,使用R语言来创建一个逼真的语音合成系统。LibriSpeech是一个开放的语音数据集,包含了大量的英语语音样本,非常适合我们的目的。语音合成的第一步是获取足够的训练数据。为了让合成的语音更逼真,我们需要大量的语音样本。训练深度学习模型需要大量的计算资源和时间,但这是实现逼真语音合成的关键步骤之一。这段代码将输入文本转换为数字表示,然后使用训练好的模型生成相应的语音信号,最后播放生成的语音。

2023-09-18 11:46:40 8

原创 R语言深度学习玩转宠物世界:宠物识别与品种分类

宠物识别是指使用计算机视觉和深度学习技术来识别不同种类和品种的宠物。这包括狗、猫、鸟类、兔子等各种宠物动物。宠物识别可以用于宠物照片的分类和管理。

2023-09-17 13:03:33 16

原创 R语言深度学习驰骋运动界:体育运动分析与策略探讨

体育运动分析是指使用数据分析技术来研究和评估体育比赛中的运动员动作、策略和比赛数据。它可以用于提高运动员的技能水平、改进战术策略,甚至进行比赛预测。

2023-09-17 12:57:43 18

原创 R语言深度学习护航:垃圾图片检测与内容过滤

垃圾图片检测是指使用计算机视觉和深度学习技术来识别和过滤出不适宜的图像或内容。这些不适宜的内容可能包括淫秽、暴力、恐怖主义宣传等。垃圾图片检测用于保护网络环境的清洁和用户的健康。

2023-09-17 12:55:44 17

原创 R语言深度学习之药物发现:探索药物世界的未来

药物发现是一项长期而繁琐的任务,通常需要花费数年时间和大量资金来研发一种新药物。然而,随着深度学习技术的崛起,药物发现领域也迎来了重大变革。深度学习可以分析大规模的生物信息数据,加速药物筛选、药效预测和分子设计等任务。本博客将深入探讨如何使用R语言和深度学习技术来进行药物发现。我们将介绍药物发现的基本原理、数据的准备、深度学习模型的构建以及实际的药物发现案例。通过本文,您将了解如何运用深度学习的力量来加速药物发现和开发过程,为医学领域的进步做出贡献。在深入探讨代码之前,让我们先了解一些基本的药物发现概念。药

2023-09-17 12:51:49 15

原创 R语言深度学习力量:揭示社交媒体趋势与用户洞察

社交媒体分析是指使用数据分析技术来解析社交媒体平台上的信息,以获得关于用户行为、趋势、情感和影响力的见解。社交媒体分析可以用于市场营销、舆情监测、用户调研等领域。

2023-09-17 12:49:20 7

原创 R语言深度学习的魔力:虚构视频场景的艺术

视频生成是指使用计算机程序和深度学习模型来生成虚构的视频内容,这些内容可能包括虚构的场景、人物、动画等。视频生成可以用于电影特效、动画制作、游戏开发等领域。

2023-09-17 12:47:06 7

原创 R语言深度学习驰骋医疗领域:电子健康记录的智能分析与患者护理优化

电子健康记录是电子化的患者医疗信息,包括患者的病历、诊断、治疗方案、医疗费用等。它取代了传统的纸质病历,为医生和医疗机构提供更方便、更可靠的患者数据管理方式。

2023-09-17 12:44:16 7

原创 R语言深度学习在金融世界的奇妙航程:高频交易与量化金融

量化金融是指使用数学、统计学和计算机科学等定量方法来分析金融市场,制定投资策略和进行交易的领域。它依赖于大数据分析、模型构建和算法交易,以实现更有效的资本配置和风险管理。高频交易是一种通过极快的计算机算法,在极短的时间内进行大量交易的策略。它依赖于计算机的速度和深度学习技术来捕捉微小的市场波动,并实现快速的交易决策和执行。

2023-09-17 12:41:22 9

原创 R语言深度学习图像去噪的艺术

图像去噪是指从图像中删除噪声或不必要的像素,以提高图像的质量和可视化效果。这些噪声可以是由图像传感器、图像采集设备或传输过程引入的,如高感光度、低光照条件或压缩算法等。

2023-09-17 12:38:39 12

原创 家居未来:R语言深度学习赋能的智能家居控制系统

智能家居控制是指通过智能设备和系统来实现家庭设备的自动化控制和远程管理。这些设备可以通过语音识别、移动应用或计算机程序进行控制,以提高家庭的舒适性、安全性和能效。

2023-09-17 12:35:40 5

原创 R语言深度学习与电影剪辑生成的完美融合

电影剪辑生成是指使用计算机程序和算法来自动生成电影剪辑或预告片的过程。这些剪辑可以基于已有的电影素材,也可以是全新创作的。深度学习技术在这一领域中的应用,使得生成的剪辑可以更具创意和吸引力。

2023-09-17 12:33:26 7

原创 R语言使用深度学习进行实时物体追踪

物体追踪是指在视频序列中连续追踪物体的位置、尺寸和形状的过程。这可以用于跟踪目标对象的运动、分析行为、或者实现自动驾驶等任务。

2023-09-17 12:30:39 8

原创 R语言用深度学习构建声纹识别系统

我们将介绍声音特征的提取、深度学习模型的构建和训练,以及最终的识别性能评估。我们从数据集的准备开始,然后提取了声音样本的MFCC特征。接着,我们创建了一个简单的卷积神经网络模型来进行声纹识别,训练模型并评估了其性能。在每个epoch结束时,模型将在验证集上进行评估,并记录训练和验证的损失以及准确度。在这里,我们将使用一个经典的数据集,即VoxCeleb2,它包含了来自不同演讲者的声音样本。训练声纹识别模型是一个重要的步骤。现在,我们对每个声音样本都提取了MFCC特征,这些特征将用于构建深度学习模型。

2023-09-17 12:19:18 5

原创 R语言用深度学习实现手写字符和数字识别

这个项目将包括数据集的准备、模型的构建和训练、以及最终的识别性能评估。深度学习在图像识别任务中有着广泛的应用,您可以根据自己的需求和兴趣进一步探索和扩展这个项目。我们将使用卷积神经网络(Convolutional Neural Network,CNN)来构建我们的手写字符和数字识别模型。在每个epoch结束时,模型将在验证集上进行评估,并记录训练和验证的损失以及准确度。我们将使用MNIST数据集,它包含了大量的手写数字图像,每个图像都标有相应的数字。我们将使用之前准备的训练数据来训练我们的模型。

2023-09-17 12:15:00 5

原创 使用R语言进行深度学习超参数优化

超参数是指那些不由模型自身学习的参数,而是在训练前需要手动设置的参数,如学习率、批量大小、层数、神经元数量等。本博客将介绍如何使用R语言来自动化深度学习模型的超参数优化,以提高模型的性能和效率。在R语言中,我们可以使用许多深度学习框架来构建和训练深度学习模型,其中最流行的框架之一是Keras。一旦完成超参数优化,您可以使用最佳超参数组合来训练您的深度学习模型。随机搜索(Random Search):随机搜索是一种更高效的超参数优化方法,它在超参数的随机组合中进行搜索,可以更快地找到较好的超参数。

2023-09-17 12:11:29 15

原创 R语言深度学习与多语言机器翻译

深度学习技术的兴起为机器翻译带来了巨大的突破,使得翻译质量得以大幅提升。深度学习技术,特别是神经机器翻译(Neural Machine Translation,NMT),已经成为多语言机器翻译的主流方法。多语言机器翻译是一项复杂的任务,其目标是将一种语言的文本自动转化为另一种语言的文本,同时保持原文的语义和语法结构。在构建多语言机器翻译模型之前,我们需要大量的平行语料库,即同一段文本在两种或多种语言之间的翻译对照。在进行多语言机器翻译之前,我们需要对文本数据进行预处理,包括分词、标记化和序列化等操作。

2023-09-16 21:48:06 20

原创 R语言利用深度学习构建网络安全入侵检测系统

数据集中包含了大量的特征,包括与网络流量相关的数值和分类属性,以及目标变量“attack_type”,表示每个网络连接的攻击类型。数据集中包含了大量的特征,包括与网络流量相关的数值和分类属性,以及目标变量“attack_type”,表示每个网络连接的攻击类型。在构建入侵检测系统之前,我们需要一个合适的数据集,以用于模型的训练和测试。:这种方法关注网络流量的行为模式,通过分析流量数据中的异常行为来检测潜在的攻击。:将不同类型的网络数据,如流量数据、日志数据和传感器数据,结合起来进行入侵检测,以提高检测精度。

2023-09-16 21:44:04 14

原创 利用深度学习进行遥感图像分析 R语言

遥感图像分析是一项关键的科学和工程任务,可用于监测地球表面的变化、资源管理、自然灾害监测等多个领域。近年来,深度学习技术的崛起为遥感图像分析提供了新的工具和方法,能够更准确地从大量遥感数据中提取有价值的信息。在遥感图像分析中,卷积神经网络(Convolutional Neural Networks,CNNs)通常是处理图像数据的首选模型。上述代码展示了遥感图像分析的一个示例,包括实际图像、真实类别和模型的预测结果。在实际应用中,您可以根据具体的遥感图像分析任务对模型进行进一步的评估和部署。

2023-09-16 21:41:47 18

原创 深度学习引领未来:用R语言探索机器人控制技术

机器人技术一直是人类科技发展的重要领域,而深度学习的出现为机器人控制带来了革命性的变革。本博客将深入研究如何使用R语言和深度学习来控制机器人的行为,以及其在自动化、工业和医疗领域的潜在应用。这包括控制机器人的运动、姿态和行为,以达到预定的目标。深度学习技术在这些方面提供了新的解决方案,使机器人能够更好地感知环境、做出智能决策和执行复杂的动作。:使用深度学习模型来实现机器人的运动控制,例如机器人臂的精确运动或移动机器人的轨迹规划。:通过深度学习来实现机器人的姿态控制,使其能够适应不同的工作环境和任务。

2023-09-16 21:39:51 15

原创 深度学习在医疗影像分析中的崭露头角:探索R语言的应用

随着深度学习技术的迅速发展,我们现在能够利用强大的神经网络来自动识别、分割和诊断医学影像,如MRI(磁共振成像)和CT(计算机断层扫描)图像。MRI图像通常包括不同的组织和结构,如脑部组织,而标签则用于指示每个像素属于哪一种结构,如白质或灰质。上述代码展示了医学影像分析的一个示例,包括原始图像、真实标签和模型的预测结果。训练过程中的损失曲线应该呈下降趋势,表明模型正在学习医学影像的特征和结构。:结合不同模态的医学影像数据,如MRI和CT,以提供更全面的诊断信息。现在,我们已经准备好数据,可以开始模型训练。

2023-09-16 21:38:06 8

原创 用R语言进行艺术风格转换:深度学习与图像魔法

在这个方法中,我们将内容图像和风格图像传递给预训练的卷积神经网络,然后通过最小化内容损失和风格损失来生成转换后的图像。深度学习技术的发展为图像风格转换提供了强大的工具,让我们能够以前所未有的方式探索艺术和图像处理。在开始图像风格转换之前,我们需要一些图像数据,包括待转换的图像和艺术风格的参考图像。风格图像将用作艺术风格的参考,而内容图像将成为我们要转换的对象。我们将使用梯度下降来最小化总损失,以生成艺术风格转换后的图像。:尝试使用不同的艺术风格图像来生成多样化的效果,甚至可以探索如何自动选择最适合的风格。

2023-09-16 21:35:47 14

python并发异步的关键技术celery.zip

python并发异步的关键技术celery.zip

2023-07-12

Java面向对象编程课件.zip

Java面向对象编程课件.zip

2023-07-12

基于Django开发轻量级Bug管理平台.zip

基于Django开发轻量级Bug管理平台.zip

2023-07-12

14天搞定Flask Web框架开发实战.zip

14天搞定Flask Web框架开发实战

2023-07-12

BBS论坛&Web 聊天室项目开发.zip

BBS论坛&Web 聊天室项目开发.zip

2023-07-12

基于YOLO训练自己的数据与任务

(一):数据打标签 1.安装好labelme工具 2.标注我们的数据 (二):写好模型所需的配置文件 3.bash create_custom_model.sh 2 (后面的数字表示你的任务的类别个数) 4.自动生成yolov3-custom.cfg (三):标签格式转换: 1.labelme --->x1,y1,x2,y2 YOLO-V3---->Cx,Cy,W,H 相对位置(取值范围0-1) 2.json2yolo.py 用它来把标签转换成对的格式 (四):写好数据和标签的路径 转换好的输出路径:data\custom\labels json_floder_path:labelme生成标签的文件夹 (五):完全其他配置操作 1.数据放到相应位置,注意名字和label的得一致 2.classes.names 改成你任务里有的类别名字 3.在train.txt与val.txt中写好对应的路径 4.custom.data (六):训练代码更改 1.train.py需要

2023-07-10

汽车信息数据集.用于可视化、分析和回归任务的汽车数据

关于数据集 如果您觉得有用,请投票。 您将获得包含有关汽车信息的数据集。 数据集包含 399 行,每行 9 个特征 数据概览: 数据集由以下列组成: 名称:每辆车的唯一标识符。 MPG:燃油效率,以每加仑英里数衡量。 气缸:发动机中的气缸数。 排量:发动机排量,表示其大小或容量。 马力:发动机的功率输出。 重量:汽车的重量。 加速度:提高速度的能力,以秒为单位。 车型年份:汽车车型的制造年份。 原产地:每辆汽车的原产国或地区。

2023-06-29

自然语言处理 对话系统.pptx

任务型对话系统主要应用于固定领域。任务型对话的广泛应用的方法有两种,一种是模块法,另一种是端到端的方法。 模块法是将对话响应视为模块,每个模块负责特定的任务,并将处理结果传送给下一个模块。模块法是将对话响应视为模块,每个模块负责特定的任务,并将处理结果传送给下一个模块。 端到端的任务型对话系统不再独立地设计各个子模块,而是直接学习对话上下文到系统回复的映射关系,设计方法更简单。相关研究可以划分为两大类:基于检索的方法和基于生成的方法。

2023-06-23

自然语言处理 文本生成与文本摘要.pptx

生成式摘要(Abstractive Summarization),作为生成式任务,常采用编码器-解码器(Encoder-Decoder)结构实现。在编码器-解码器结构中,编码器“理解”输入序列,而解码器根据编码器对原文的理解(编码结果)和已生成的部分摘要信息来生成后续内容。 相对于抽取式方法,生成式摘要内容来源不局限于原文内容,可以是原文中从未出现的,这更贴近人类做摘要的做法,摘要表达可以更为简练,冗余度更低,但相应的实现难度也较高。

2023-06-23

自然语言处理 机器阅读理解.pptx

机器阅读理解(Machine Reading Comprehension, MRC)是让机器具有阅读并理解文章的能力。机器阅读理解是自然语言处理的核心任务之一,在很多领域有着广泛的应用, 比如问答系统、搜索引擎、对话系统等。机器阅读理解包含完形填空式、选择式、抽取式 和生成式四种主要类型。本章主要介绍抽取式阅读理解和选择式阅读理解。

2023-06-23

自然语言处理文本信息抽取.pptx

基于规则的方法:利用专家手工制订的规则进行命名实体识别。举例:“赵某出生于山东省菏泽市曹县……于 11 月 22 日将刘某诉至菏泽市曹县人民法院”,构建规则,满足“地名+人民法院”的词认定为组织机构。 基于传统机器学习的方法:基于传统机器学习的方法又可分为有监督和无监督的方式。有监督的方法将 NER 转换为多分类或序列标记任务。根据标注好的数据,人工构建特征工程,然后应用机器学习算法训练模型使其对数据的模式进行学习。例如隐马尔可夫模型(HMM)、支持向量机(SVM)和条件随机场(CRF)等。 基于深度学习的方法:以端到端的方式自动检测对应输入语料中的实体类别,通过深度学习的方式自动发现隐藏的特征,抽取与实体相对应的语义信息,是现在主流的做法。

2023-06-23

自然语言处理:文本分类

基于统计模型的文本分类方法是文本分类的主要方法之一 统计方法首先是对原始输入数据进行预处理,一般包括分词、数据清洗和数据统计等,然后人工抽取特征并选择具体的统计模型设计分类算法 根据需要还可能进行特征选择和特征提取,常用的特征选择算法有文档频率、期望交叉熵、互信息等,特征提取转换原始的特征空间生成新的语义空间,能够较好地解决一词多义、一义多词等问题 常用的统计模型包括朴素贝叶斯算法、支持向量机算法等。下面介绍朴素贝叶斯分类算法

2023-06-23

自然语言处理 词向量技术

词向量(Word Vector)是对词语义或含义的数值向量表示,包括字面意义和隐含意义。 词向量可以捕捉到词的内涵,将这些含义结合起来构成一个稠密的浮点数向量,这个稠密向量支持查询和逻辑推理。 词向量也称为词嵌入,其英文均可用 Word Embedding,是自然语言处理中的一组语言建模和特征学习技术的统称,其中来自词表的单词或短语被映射为实数的向量,这些向量能够体现词语之间的语义关系。从概念上讲,它涉及从每个单词多维的空间到具有更低维度的连续向量空间的数学嵌入。当用作底层输入表示时,单词和短语嵌入已经被证明可以提高 NLP 任务的性能,例如文本分类、命名实体识别、关系抽取等。

2023-06-23

自然语言处理关键词提取

基于词图模型的关键词提取算法主要有 PageRank 和 TextRank。 PageRank 是 TextRank 算法的思想基础,TextRank 是 PageRank 在文本上的应用。 来源:Google 创始人拉里·佩奇和谢尔盖·布林于 1997 年构建早期的搜索系统原型时提出的链接分析算法,通过计算网页链接的数量和质量来粗略估计网页的重要性。 应用:该算法创立之初即应用在谷歌的搜索引擎中,是谷歌搜索的核心算法,对网页进行排名,从而解决互联网网页的价值排序问题。

2023-06-23

自然语言处理:中文分词

(1)这里要做到最大匹配,所以不一定第一次匹配成功就可以切分 。 (2)为提升扫描效率,也可以根据汉字数量的情况来设计多个词典,然后根据字数分别从不同词典中进行扫描。 (1)逆向最大匹配算法使用的分词词典是逆序词典,里面的每个词都将按逆序方式存放。在实际应用过程中,可以将待分词文本进行倒排处理,从而生成逆序文本,然后再根据逆序词典,对逆序文本用正向最大匹配算法进行处理。 (2)在中文中,由于偏正结构较多,所以从后向前进行匹配会提高精确度,因此,逆向最大匹配算法比正向最大匹配算法的误差要小。统计结果表明,单纯使用正向最大匹配的错误率为 1/169,单纯使用逆向最大匹配的错误率为 1/245。例如,对“你今天很好看”这一句文本进行分词,按照正向最大匹配算法得到的分词结果是“你 / 今天 / 很好 / 看”, 按照逆向最大匹配算法得到的分词结果是“你 / 今天 / 很 / 好看”。

2023-06-23

第三章 机器学习算法基础

在这一章中将引入NLP的算法体系,当前的主流算法可以分为两类: (1)传统的基于统计学的机器学习算法体系。 (2)人工神经网络算法体系。 很多机器学习算法经常应用到NLP相关的任务中,例如用朴素贝叶斯、支持向量机、逻辑回归等方法进行文本分类,用k-means方法进行文本聚类等。 近年来,人们对大脑和语言的内在机制了解的越来越多,也能够从更高的层次上观察和认知思维现象,由此形成了一套人工神经网络的算法体系。 本章将介绍机器学习算法和人工神经网络算法的概念、原理和方法。

2023-06-23

第二章 自然语言处理编程基础

Python [`paiθən],译为“蟒蛇”。 Python语言拥有者是Python Software Foundation(PSF)。 PSF是非盈利组织,致力于保护Python语言开放、开源和发展。 Python 3.0 在设计的时候没有考虑向下兼容。 (1)基础语法 编码 默认情况下,Python 3 源码文件以 UTF-8 编码,所有字符串都是 unicode 字符串。 为源码文件指定不同的编码: # -*- coding: cp-1252 -*- 标识符 开头字符必须是字母或下划线 _ 。 标识符的其余部分由字母、数字、下划线和汉字组成。 标识符对大小写敏感。 在 Python 3 中,非 ASCII 标识符也是允许的。

2023-06-23

文档自然语言处理概述-课件

自然语言处理( Natural Language Processing)是计算机科学、人工智能和计算语言学的一个交叉领域,关注计算机和人类(自然)语言之间的交互,特别是关注计算机编程以有效处理大型自然语言语料库。自然语言处理中的挑战通常涉及自然语言理解、自然语言生成、语言与机器感知的连接、对话系统或它们的某些组合。 文本分类是机器对文本按照一定的分类体系自动标注类别的过程,也是自然语言处理最早的应用领域之一。你能想到哪些自动文本分类应用? 垃圾邮件分类,新闻类型分类,... 情感分析也可以认为是文本分类的一个子类型。情感分析往往应用于电商的用户评价分析,微博等自媒体的用户留言倾向分析,或者公共事件的舆情分析等。 智能问答往往是基于领域知识的单轮对话,即用户就某一领域的问题进行提问,机器基于领域知识给出答案的过程。而聊天系统则属于多轮对话过程,往往涉及领域知识的多轮对话或者闲聊等内容。 信息检索指信息按一定的方式组织起来,并根据用户的需要找出有关的信息的过程和技术。搜索引擎是当前主流的信息检索方式,Google、百度、搜狗等搜索引擎在信息检索方面已

2023-06-23

深度神经网络的宝石分类数据集

该数据集是一个专为宝石分类任务而创建的基于深度神经网络的数据集。它包含了大量宝石样本的图像和对应的标签,可用于训练和评估宝石分类算法。 以下是该数据集的关键特点: 数据规模:该数据集包含了大量宝石样本,每个样本都有一张高质量的图像和对应的分类标签。 多类别分类:数据集中涵盖了多种不同类型的宝石,如钻石、蓝宝石、红宝石、祖母绿等。每个宝石类型都有相应的标签。 高质量图像:每个宝石样本都附带一张高分辨率的图像,这些图像捕捉了宝石的细节和特征,有助于训练模型准确地分类宝石。 数据标注:每个图像都有与之对应的宝石分类标签,这些标签是由专业领域人员手动进行的,确保了数据的准确性和可靠性。 划分和评估:数据集可以划分为训练集、验证集和测试集,以便进行模型训练、调优和性能评估。 基于深度神经网络:该数据集专为基于深度学习的宝石分类任务设计,适用于各种深度神经网络模型,如卷积神经网络(CNN)和迁移学习模型等。 应用领域:这个数据集可用于宝石鉴定、宝石贸易、珠宝设计等领域,为相关研究、开发和应用提供了有价值的资源。 这个基于深度神经网络的宝石分类数据集将为研究人员、开发者和实践者提供

2023-06-11

国际象棋游戏数据集!!

数据集介绍 数据介绍 这是从Lichess.org网站上的精选用户那里收集的20,000多个游戏的集合,以及如何收集更多游戏。将来,我还会收集更多游戏。 内容范围 游戏编号; 额定(T / F); 开始时间; 时间结束; 转弯数量; 游戏状态; 优胜者; 时间增量; 白色玩家编号; 白人球员等级; 黑人玩家ID; 黑人球员等级; 标准象棋符号的所有动作; 开放的生态(任何给定开口的标准化代码,在此处列出); 开幕名称; 开启层(开启阶段的移动次数) 探索方向 单个国际象棋游戏中包含许多信息,更不用说多个游戏的完整数据集了。它主要是一种模式游戏,而数据科学就是要检测数据模式,这就是为什么国际象棋是过去在AI领域投入最多的原因之一。该数据集收集了20,000个游戏中可用的所有信息,并以易于处理的格式进行了分析,例如,分析了允许玩家以黑白棋获胜的方式,多少元(游戏外)影响游戏的因素,黑白与空缺与胜利之间的关系等等。 数据来源 对于巫妖这些独立的游戏。我使用Lichess API收集了这些数据,该API可以收集任何给定用户的游戏历史记录。困难的部分是收集要使用的用户名,但是API还允许转

2023-06-11

汽车信息数据集(用于可视化和分析的汽车数据)

您将获得包含有关汽车信息的数据集。 数据集包含 399 行 9 个要素 名称:每辆汽车的唯一标识符。 MPG:燃油效率,以英里/加仑为单位。 气缸数:发动机中的气缸数。 排量:发动机排量,表示其大小或容量。 马力:发动机的功率输出。 重量:汽车的重量。 加速:提高速度的能力,以秒为单位。 车型年份:汽车模型的制造年份。 原产地:每辆汽车的原产地国家或地区。 燃油效率以英里/加仑为单位。 发动机中的气缸数。 发动机排量,指示其大小或容量。 发动机的功率输出 汽车的重量。 雪佛兰chevelle malibu 别克云雀320 普利茅斯卫星 Amc rebel SST 福特都灵 福特银河500 雪佛兰黑斑羚 普利茅斯狂怒iii 庞蒂亚克卡特琳娜 Amc大使DPL 道奇挑战者se 普利茅斯cuda 340 雪佛兰蒙特卡洛 别克旅行车(sw) 丰田科罗娜马克ii 普利茅斯喷粉机 amc大黄蜂 福特特立独行 日产pl510 大众1131豪华轿车 标致504 奥迪100 ls 萨博99 e 宝马2002

2023-06-10

yolov5识别数据集

yolov5识别数据集

2023-05-20

WebRTC + Tensorflow.js 在运动健康类项目中的前端应用

WebRTC + Tensorflow.js 在运动健康类项目中的前端应用

2022-12-03

淘 宝已买到的宝贝数据爬虫(已模拟登录)python

淘 宝已买到的宝贝数据爬虫(已模拟登录)python

2022-11-25

天猫商品数据爬虫(已模拟登录)python

# 天猫商品数据爬虫 ## 使用教程 1. [点击这里下载][1]下载chrome浏览器 2. 查看chrome浏览器的版本号,[点击这里下载][2]对应版本号的chromedriver驱动 3. pip安装下列包 - [x] pip install selenium - [x] pip install pyquery 4. [点击这里][3]登录微博,并通过微博绑定淘宝账号密码 5. 在main中填写chromedriver的绝对路径 6. 在main中填写微博账号密码 ```python #改成你的chromedriver的完整路径地址 chromedriver_path = "/Users/bird/Desktop/chromedriver.exe" #改成你的微博账号 weibo_username = "改成你的微博账号" #改成你的微博密码 weibo_password = "改成你的微博密码" ``` ## 演示图片 ![](example.gif) ![](example2.png) [1]:https://www.g

2022-11-25

淘宝模拟登录python

# 淘宝模拟登录 ## 使用教程 1. [点击这里下载][1]下载chrome浏览器 2. 查看chrome浏览器的版本号,[点击这里下载][2]对应版本号的chromedriver驱动 3. pip安装下列包 - [x] pip install selenium 4. [点击这里][3]登录微博,并通过微博绑定淘宝账号密码 5. 在main中填写chromedriver的绝对路径 6. 在main中填写微博账号密码 ```python #改成你的chromedriver的完整路径地址 chromedriver_path = "/Users/bird/Desktop/chromedriver.exe" #改成你的微博账号 weibo_username = "改成你的微博账号" #改成你的微博密码 weibo_password = "改成你的微博密码" ``` ## 演示图片 ![](example.gif) [1]:https://www.google.com/chrome/ [2]:http://chromedriver.stor

2022-11-25

3.1.2 Spring 课程介绍 内容回顾和新内容介绍(中).ev4a

3.1.2 Spring 课程介绍 内容回顾和新内容介绍(中).ev4a

2022-08-05

12.【上课PPT】 前端开发

12.【上课PPT】 前端开发

2022-08-05

11.【课堂笔记】 JQuery

11.【课堂笔记】 JQuery

2022-08-05

11.【课堂笔记】 JavaScript

11.【课堂笔记】 JavaScript

2022-08-05

html 详细课堂笔记html 详细课堂笔记

html 详细课堂笔记

2022-08-05

css课堂笔记前端css课堂笔记

css课堂笔记

2022-08-05

02-JDBC-数据库连接技术

02-JDBC-数据库连接技术

2022-08-05

mysql数据库(课件资料、软件资料、视频资料)

mysql数据库(课件资料、软件资料、视频资料)mysql数据库(课件资料、软件资料、视频资料)

2022-08-05

Java后端学习路线 (详细路线)

第一阶段:Java基础 大概用时:30天 重点知识点:数据类型、核心语法、面向对象、数组、集合、IO流、String/StringBuffer/StringBuilder、线程、并发、反射、泛型。 学习Java开发,首先要学习java基础知识,尤其是校招的时候非常注重基础,即使没有项目也没关系,基础一定要打好,一般笔试以及面试的第一轮,对基础的考察是比较多的。 第二阶段:数据库 大概用时:7天 重点知识点:基本的增删改查、SQL命令,索引、存储过程、JDBC。 主流的数据库有MySQL、Oracle、SQL Server等等,你只需要搞定一个就可以了,知识都是相通的,一通百通。目前公司里用到MySQL的比较多,所以建议大家学习MySQL数据库。 第三阶段:Javaweb 大概用时:7天 重点知识点:HTML、CSS、JS、jQuery框架、Servlet程序、Filter过滤器、Listener监听器、JSP页面、EL表达式、JSTL标签库、Cookie技术、Session会话、JSON使用、Ajax请求、Tomcat、maven等等。 Java开发的岗位大多是Web开

2022-05-29

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除