spoj 694&&705 后缀数组

原创 2012年03月22日 10:34:01
每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数。如果所有的后缀按照 suffix(sa[1]), suffix(sa[2]),suffix(sa[3]), …… ,suffix(sa[n])的顺序计算,不难发现,对于每一次新加进来的后缀 suffix(sa[k]),它将产生 n-sa[k]+1 个新的前缀。但是其中有height[k]个是和前面的字符串的前缀是相同的。所以 suffix(sa[k])将“贡献”出 n-sa[k]+1- height[k]个不同的子串。累加后便是原问题的答案。这个做法的时间复杂度为 O(n)

#include<iostream>
#include<cstring>
using namespace std;

const int maxn=1010;
int a[maxn],b[maxn],s[maxn],c[maxn];
int *rank,*height,*sa=s+1;

void sortandrank(int *a1,int *a2,int n,int &m,int j)
{
    int i;memset(c,0,sizeof(c));
    for(i=0;i<n;i++) c[a1[i]]++;
    for(i=1;i<=m;i++) c[i]+=c[i-1];
    for(i=n-1;i>=0;i--) sa[--c[a1[a2[i]]]]=a2[i];
    a2[sa[0]]=m=0;
    for(i=1;i<n;i++) a2[sa[i]]=a1[sa[i-1]]==a1[sa[i]]&&a1[sa[i-1]+j]==a1[sa[i]+j]?m:++m;
}
void da(char*str,int n,int m)
{
    int *a1=a,*a2=b,*tmp;
    int i,j,p;
    for(i=0;i<n;i++) a1[i]=i,a2[i]=str[i];
    a1[n]=a2[n]=-1;
    sortandrank(a2,a1,n,m,0);
    for(j=1;m<n-1;j<<=1)
    {
        p=0;
        for(i=n-j;i<n;i++) a2[p++]=i;
        for(i=0;i<n;i++) if(sa[i]>=j) a2[p++]=sa[i]-j;
        sortandrank(a1,a2,n,m,j);
        tmp=a1,a1=a2,a2=tmp;
    }
    rank=a1,height=a2;
}
void calheight(char*str,int n)
{
    int i,j,k;
    sa[-1]=n;
    for(height[0]=k=i=0;i<n;i++)
    {
        for(k?k--:0,j=sa[rank[i]-1];str[i+k]==str[j+k];k++);
        height[rank[i]]=k;
    }
}
char str[maxn];
int main()
{
    int n;cin.sync_with_stdio(false);
    cin>>n;
    while(n--)
    {
        cin>>str;
        int len=strlen(str);str[len]=0;
        da(str,len+1,128);calheight(str,len);
        int ans=0;
        for(int i=1;i<=len;i++)
        {
            ans+=len-sa[i]-height[i];
        }
        cout<<ans<<endl;
    }
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

SPOJ 694&705 后缀数组

点击打开链接 题意:问一个串的子串可以有多少种,就是将重复的去掉 思路:每个子串一定是某个后缀的前缀,对于某个后缀sa来说,它的最长前缀就是重复的个数,那么减去就好,而最长前缀可以通过后缀数组的sa数...

SPOJ 694/705 后缀数组

思路: 论文题*n Σn-sa[k]-ht[k]+1 就是结果 O(n)搞定~//By SiriusRen #include #include #include using namespac...

spoj694/705 Distinct Substrings - 后缀数组

题目链接:http://acm.hust.edu.cn/vjudge/problem/19282 题目大意:求不同子串的个数 题解:后缀数组.. suffix(i)对子串个数所做的贡献为len-s...

SPOJ 694/705 Distinct Substrings ( 后缀数组 不同子串个数 )

题意 : 求一个字符串中不同子串的

[后缀数组]spoj694 Distinct Substrings/spoj705 New Distinct Substrings

今天接着讲后缀数组哈spoj694 spoj705一句话题意: 给定一个字符串,求不相同的子串的个数。算法分析: 每个子串一定是某个后缀的前缀,那么原问题就能转换成求所有后缀之间的不相同的前缀...

SPOJ694&&SPOJ705:Distinct Substrings(后缀数组)

Description Given a string, we need to find the total number of its distinct substrings. Input...

SPOJ 694 Distinct Substrings(后缀数组 所有不相同子串个数)

题目链接:http://www.spoj.com/problems/DISUBSTR/ 第一次做spoj上的题目 这个题目还是利用height数组,表示后缀数组理解还是靠height数组的理解 这...

spoj694 Distinct Substrings 后缀数组

SPOJ Problem Set (classical) 694. Distinct Substrings Problem code: DISUBSTR

spoj 694. Distinct Substrings(后缀数组)

题意:给出一个串,求串中不同子串的个数。 思路:利用后缀数组的height数组,按照sa[1],sa[2],……,sa[n]顺序计算,第i个串会使答案增加n-sa[i]-height[i]。 题目...

Spoj694(Distinct Substrings)求字符串不相同的子串个数(后缀数组)

/********************************************* 题目地址: http://www.spoj.com/problems/DISUBSTR/ 题目大意: 给...
  • Jarily
  • Jarily
  • 2013-03-23 19:55
  • 1197
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)