[LeetCode]Product of Array Except Self,解题报告

题目

Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].

Solve it without division and in O(n).

For example, given [1,2,3,4], return [24,12,8,6].

Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)


要求

题目比较好理解,但是有几个关键点这里需要明确一下:

  1. 不能用除法。意思就是:你不能上来先把所有数乘积算出来,然后再逐个除以每个元素,这种思路是无聊、没技术含量而且不被允许的。
  2. 时间复杂度必须控制到O(n)。意思是:如果用O(n^2)的方法,那外层一个for循环,内层左右遍历就解决了,也是很无聊的解法。
  3. 空间复杂度最好是常数,但是重新分配的返回数组不算在内。

思路1

我们以一个4个元素的数组为例,nums=[a1, a2, a3, a4]。
想在O(n)时间复杂度完成最终的数组输出,res=[a2*a3*a4, a1*a3*a4, a1*a2*a4, a2*a3*a4]。

比较好的解决方法是构造两个数组相乘:

  1. [1, a1, a1*a2, a1*a2*a3]
  2. [a2*a3*a4, a3*a4, a4, 1]

这样思路是不是清楚了很多,而且这两个数组我们是比较好构造的。

AC代码如下:

    public int[] productExceptSelf(int[] nums) {
        int len = nums.length;
        int[] pSeq = new int[nums.length];
        int[] nSeq = new int[nums.length];

        pSeq[0] = 1;
        for (int i = 1; i < len; i ++) {
            pSeq[i] = pSeq[i - 1] * nums[i - 1];
        }

        nSeq[len - 1] = 1;
        for (int i = len - 2; i >= 0; i --) {
            nSeq[i] = nSeq[i + 1] * nums[i + 1];
        }

        for (int i = 0; i < len; i ++) {
            pSeq[i] *= nSeq[i];
        }

        return pSeq;
    }

但是,上面的空间复杂度为O(N),不满足常数时间复杂度。我们可以对上面的代码进行空间优化,用一个常数p来保存每次计算的结果值。

优化AC代码:

        int len = nums.length, p;
        int[] arr = new int[nums.length];

        arr[0] = p = 1;
        for (int i = 1; i < len; i ++) {
            p = p * nums[i - 1];
            arr[i] = p;
        }

        p = 1;
        for (int i = len - 2; i >= 0; i --) {
            p = p * nums[i + 1];
            arr[i] *= p;
        }

        return arr;

思路2

本以为这样就已经很不错了,但是在discuss讨论区发现了一个特别牛逼的递归解法,非常精妙,这里分享给大家。

    public int[] productExceptSelfRev(int[] nums) {
        multiply(nums, 1, 0, nums.length);

        return nums;
    }

    private int multiply(int[] a, int fwdProduct, int indx, int N) {
        int revProduct = 1;
        if (indx < N) {
            revProduct = multiply(a, fwdProduct * a[indx], indx + 1, N);
            int cur = a[indx];
            a[indx] = fwdProduct * revProduct;
            revProduct *= cur;
        }
        return revProduct;
    }
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值