1,题目要求
Given an array nums of n integers where n > 1, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].
Example:
Input: [1,2,3,4]
Output: [24,12,8,6]
Note:
Please solve it without division and in O(n).
Follow up:
Could you solve it with constant space complexity? (The output array does not count as extra space for the purpose of space complexity analysis.)
给定n个整数的数组,其中n> 1,返回一个数组输出,使得output [i]等于除nums [i]之外的所有nums元素的乘积。
注意:
请在没有除法的情况下解决,并在O(n)中解决。
跟进:
你能用恒定的空间复杂度解决它吗? (出于空间复杂度分析的目的,输出数组不算作额外空间。)
2,题目思路
对于这道题,所要求解的目标是给定一个数组,返回对应位,除了该位之外的所有的累加乘积。题中的例子也已经非常明确了。
如果我们使用暴力求解的方法是非常简单的,对每一位都进行一次遍历即可。
但是, 这种方法的时间消耗太大,不是很好的方法。
因此,对于这种需要遍历整个数组并返回除了自己之外的计算结果的题目,我们可以利用从前往后、从后往前的策略,来对整个数组实现遍历并计算乘积的功能。
在从前往后遍历时,我们利用一个变量记录从开始到当前位置的累加和。
从后往前也是一样,记录乘积。
具体算法过程见第三部分。
3,代码实现
int x = []() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
return 0;
}();
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
int numsLen = nums.size();
vector<int> res (numsLen, 1);
int productFront = 1; //从前往后
int productBack = 1; //从后往前
for (int i = 0; i < numsLen; i++)
{
res[i] = res[i] * productFront;
productFront = productFront*nums[i];
}
for (int i = numsLen - 1; i >= 0; i--)
{
res[i] = res[i] * productBack;
productBack = productBack * nums[i];
}
return res;
}
};