
----【数论】
文章平均质量分 72
lamborghini1993
这个作者很懒,什么都没留下…
展开
-
POJ 3892 RSA Factorization
题目地址:http://poj.org/problem?id=3892题目大意:RSA分解。这儿的N比较大,要用高精度,如果一般的肯定分解不了,但是这儿有一个限制|q-kp|<=100000解题报告:假设q-kp=V那么q=kp+V代入n=pqn=p*(kp+V)k*p*p+V*p-n=0解这个方程即可。在枚举V的时候判别式=V*V+4kn我们可以先计算出一个最大的值TT*T<=4kn...原创 2013-07-18 14:04:46 · 1455 阅读 · 0 评论 -
HDU 1812 Count the Tetris (polya定理+高精度)
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1812标准的polya定理问题。AC代码:import java.math.BigInteger;import java.util.Scanner;public class Main { static Scanner cin=new Scanner(System.原创 2013-08-12 20:04:45 · 1969 阅读 · 0 评论 -
HDU 3547 DIY Cube 数论- Polya定理
题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=3547给定正方体,要求给正方形的八个顶点着色,问有多少种不同的着色方案,当然通过旋转和翻转得到的着色方案视为相同。这题是一道典型的Polya定理的题目,根据polya定理,可以直接求得公式。①单位元素(1)(2)(3)(4)(5)(6)(7)(8),格式为(1)^8原创 2013-07-06 16:25:41 · 1275 阅读 · 0 评论 -
HDU 4611 Balls Rearrangement (数学-思维逻辑题)
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4611题意:给你一个N、A、B,要你求<img src="http://latex.codecogs.com/gif.latex?\sum_{i=0}^{N-1}\left&space;|&space;i&space;mod&space;A-i&space;mod&space;B&space原创 2013-08-25 19:37:09 · 1227 阅读 · 0 评论 -
HDU 3923 Invoker (polya 定理+逆元)
题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=3923用polya 定理,因为要模一个数,所以要求逆元。然后乘以逆元就行了。#include #include #include #include #include #include #include #include #include #includ原创 2013-07-04 23:31:44 · 1177 阅读 · 0 评论 -
POJ 2154 Color (Polya定理+欧拉函数)
题目地址:http://poj.org/problem?id=2154题意:给出两个整数n和p,代表n个珠子,n种颜色,要求不同的项链数,并对结果mod(p)处理。置换只有旋转一种方式,那么共有n个置换基本知识:环的个数为gcd(n , i) , 长度L=n / gcd(n , i) 其中 i 为转的位子数普通求法: ∑n^( gcd(n,i) ) 0优化:枚举环原创 2013-08-13 20:20:20 · 1245 阅读 · 0 评论 -
HDU 4569 Special equations (数学题)
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4569题意:给你一个最高幂为4的一元多项式,让你求出一个x使其结果模p*p为0.题解:f(x)%(p*p)=0那么一定有f(x)%p=0,f(x)%p=0那么一定有f(x+p)%p=0。所以我们可以开始从0到p枚举x,当f(x)%p=0,然后再从x到p*p枚举,不过每次都是+p,找到原创 2013-08-14 16:57:31 · 1495 阅读 · 0 评论 -
UVa 11538 - Chess Queen
题目地址:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2533思路:在同一行:n*m*(m-1)在同一列:m*n*(n-1)对角线:2*(2*(A(2,2)+A(3,2)+A(4,2)+…+A(m-1,2))+A(m,2)*(n-原创 2013-05-14 16:36:09 · 1212 阅读 · 0 评论 -
HDU 4633 Who's Aunt Zhang (Polya定理+快速幂)
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4633典型的Polya定理:思路:根据Burnside引理,等价类个数等于所有的置换群中的不动点的个数的平均值,根据Polya定理,不动点的个数等于Km(f),m(f)为置换f的循环节数,因此一次枚举魔方的24中置换,人肉数循环节数即可,注意细节,别数错了。1、静止不动,(顶原创 2013-08-12 16:59:11 · 1469 阅读 · 0 评论 -
HDU 4577 X-Boxes (高精度)
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4577题意:给你n个球,k个盒子,放球满足以下规则:1、第i个盒子放编号为x的球,那么第i+1个盒子一定放编号为2x的求。问你第一个盒子最多能放多少个球。题解:从1开始放在第一个盒子里面,然后照上面规则放完k个盒子,然后再放剩下球编号最小的在第一个盒子……,直到不能放完k原创 2013-08-10 19:51:21 · 1414 阅读 · 0 评论 -
HDU 4336 Card Collector 数学期望(容斥原理)
题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=4336题意简单,直接用容斥原理即可AC代码:#include #include #include #include #include #include #include #include #include #include #include #incl原创 2013-08-08 09:08:43 · 1412 阅读 · 0 评论 -
HDU 1452 Happy 2004 (素因子分解+快速幂模+乘法逆元)
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1452题意:给你一个n,让你求2004^n所有因子(包括1和本身)的和%29.题解:s[i]代表i的所有因子之和,那么有以下两个结论1、当gcd(a,b)=1时,s[a*b]=s[a]*s[b].2、当p为素数时,s[p^n]=p^0+p^1+……+p^n=(p^(n+1)-原创 2013-08-08 16:33:39 · 1305 阅读 · 0 评论 -
HDU 1211 RSA (扩展欧几里得+快速幂)
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1211题意:给你四个数p,q,e,ln=p*q,f=(p-1)*(q-1)要你求出一个d满足(e*d)%f=1然后给你l个c,求出每个c^d%n对应的ASCII。题解:求d用扩展欧几里得,后面一个用快速幂AC代码:#include #include #in原创 2013-08-08 17:00:02 · 1335 阅读 · 0 评论 -
ACM数学-2
ACM数学1.burnside定理,polya计数法 这个专题我单独写了个小结,大家可以简单参考一下:polya 计数法,burnside定理小结 2.置换,置换的运算 置换的概念还是比较好理解的,《组合数学》里面有讲。对于置换的幂运算大家可以参考一下潘震皓的那篇《置换群快速幂运算研究与探讨》,写的很好。 *简单题:(应该理解原创 2013-08-08 20:33:28 · 2686 阅读 · 0 评论 -
HDU 1852 Beijing 2008 数论
题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=1852这道题和HDU1452类似。题意:给你一个n、k,让你求2008^n所有因子的和(包括1和本身)%k,得到m,然后输出2008^m%k。题解:看我HDU1452题,这里有一点需要注意的是:s=(2^(3n+1)-1)(251^(n+1)-1)/250因为gcd(250原创 2013-08-08 20:13:55 · 1392 阅读 · 0 评论 -
HDU 3037 Saving Beans (组合+Lucas定理+逆元+快速幂)
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=3037Lucas定理A、B是非负整数,p是质数。A B写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]。则组合数C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0])原创 2013-08-09 09:11:04 · 1161 阅读 · 0 评论 -
HDU 1588 Gauss Fibonacci (矩阵乘法+加法+快速幂)
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1588题意简单,化简成A^b+A^b*( B+B^2+……B^(n-1) ),其中B=A^kAC代码:#include #include #include #include #include #include #include #include #includ原创 2013-08-21 20:36:08 · 1204 阅读 · 0 评论 -
HDU 4704 Sum (费马小定理)
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4704题意:不知道为什么java超时:import java.math.BigInteger;import java.util.Scanner;public class Main { static Scanner cin=new Scanner(Syste原创 2013-08-22 20:32:23 · 1461 阅读 · 0 评论 -
Uva 11401 - Triangle Counting
题目地址: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2396思路:这里肯定不能用O(n^3)的算法,只能找规律设最大的数为x,另外两条为z,y,所以有z+y>x,变形得x-y当y=1时,x无解。当y=2时,x有一个解。原创 2013-05-14 16:54:06 · 1109 阅读 · 0 评论 -
POJ 2689 Prime Distance (素数+两次筛选)
题目地址:http://poj.org/problem?id=2689题意:给你一个不超过1000000的区间L-R,要你求出区间内相邻素数差的最大最小值,输出相邻素数。AC代码:#include #include #include #include #include #include #include #include #include #inclu原创 2013-08-16 15:05:34 · 1131 阅读 · 0 评论 -
新视野OJ 2301 [HAOI2011]Problem b (数论-gcd)
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k。题解:和前几道题差不多,就是xy不是从1开始了,所以我们很容易联想到容斥原理,ans=gcd(b,d)-gcd(a-1,d)-gcd(b,c-1)+gcd(a-1,b-1)。A...原创 2013-10-09 15:28:18 · 1538 阅读 · 0 评论 -
ACM数学知识体系
在盛情收到学弟邀请给他们整理ACM数学方面的知识体系,作为学长很认真的弄了好久,希望各学弟不辜负学长厚爱!!!很抱歉由于电脑全盘格式化好多word、PPT都丢失,我尽量详细地给大家找到各知识点学习链接及题目链接,敬请原谅。里面很多牛人写的博客,我都贴了网址,大家认真看下吧! 本人数论博客地址: http://blog.csdn.net/xh_rev...原创 2014-05-13 00:38:35 · 9128 阅读 · 6 评论 -
HDU 1796 How many integers can you find (简单容斥)
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1796题意:给你m个正整数,问你从1到n-1有多少个数至少能被这m个数中的一个数整除。题解:AC代码:#include <iostream>#include <cstdio>#include <cstring>#include <string>#in...原创 2013-10-11 17:07:41 · 2085 阅读 · 0 评论 -
HDU 1695 GCD (数论)
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1695题意:1<=x<=n,1<=y<=m,中有多少对gcd(x,y)=k,其中gcd(x,y)和gcd(y,x)算一种。题解:第一种思路:今天做了好几道关于GCD的题目,可以抽象出1<=x<=n/k,1<=y<=m/k多少对gcd(x,y)=1,那么就和新...原创 2013-10-06 19:13:38 · 1771 阅读 · 0 评论 -
SPOJ 7001 Visible Lattice Points (数论关于gcd,超经典极力推荐-莫比乌斯反演)
传送门:http://www.spoj.com/problems/VLATTICE/SPOJ Problem Set (classical)7001. Visible Lattice PointsProblem code: VLATTICEConsider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N...原创 2013-10-06 15:51:58 · 3845 阅读 · 0 评论 -
新视野OJ 2005 [Noi2010]能量采集 (数论-gcd)
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2005题解:设f[i]表示gcd(x,y)=i 的个数(1<=x<=n,1<=y<=m),那么最后的结果就是,其中n=min(n,m)。那么现在关键就是求解f[i]了。其中gcd(x,y)=i的倍数为[n/i]*[m/i],但是这个包括了i的倍数,所以-2i-3i-……...原创 2013-10-06 12:35:34 · 1744 阅读 · 1 评论 -
HDU 4762 Cut the Cake (数学概率) 2013 ACM/ICPC 长春网络赛
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4762题意:随机在一块蛋糕上放m个草莓,然后用最好的方法切成n块相同大小形状的扇形,问你m个草莓在同一块蛋糕上面的概率。题解:以落在最左边的一颗来考虑,其余落在其右边概率为1/m^(n-1),考虑每一个都可能在最左,实际上就是乘以C(1,n)可以推出来概率公式为n / (m^(n-1))。然后用高精度就o...原创 2013-09-29 15:00:51 · 1821 阅读 · 0 评论 -
POJ 2635 The Embarrassed Cryptographer 高精度
题目地址: http://poj.org/problem?id=2635题意:给出一个n和L,一直n一定可以分解成两个素数相乘。让你判断,如果这两个素数都大于等于L,则输出GOOD,否则输出最小的那个素数。从1到1000000的素数求出来,然后一个一个枚举到L,看能否被n整除,能的话就输出BAD+改素数都不行的话,说明两个素数都大于等于L,输出GOODAC代码:#include <iostr...原创 2013-07-18 16:01:41 · 933 阅读 · 0 评论 -
新视野OJ 2705 [SDOI2012]Longge的问题 (数论)
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2705题解:求 sigma(gcd(i,n), 1<=i<=n<2^32)又是令gcd(i, n) = d,答案就是sigma(phi(n/d)),但是我们不能预处理出phi[]数组,因为开不了数组……注意到因数个数是O(2sqrt(n))级别的,我们枚举所有的n/d,一边d...原创 2013-10-09 23:22:51 · 1743 阅读 · 0 评论 -
UVA 11375 - Matches (数学——递推)
传送门:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=show_problem&problem=2370 题意:用n跟火柴能组成多少个非负整数,其中火柴不必用完。其中0——6根火柴1——2根火柴2——5根火柴3——5根火柴4——4根火柴5——原创 2013-09-25 11:15:07 · 1640 阅读 · 0 评论 -
UVA 11426 - GCD - Extreme (II) (数论)
题目地址:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2421题意简单。题解:设f(n)=gcd(1,n)+gcd(2,n)+……+gcd(n-1,n);s(n)=f(1)+f(2)+……f(n).所以有s(n)=s(n-1)+f(n原创 2013-08-16 10:19:28 · 1453 阅读 · 0 评论 -
HDU 3694 Fermat Point in Quadrangle (数学-费马点)
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=3694题意:给你四个点,让你求他们的费马点(求一个点到这四个点的距离只和最小)。题解:通过费马点定理,我们可以得出,当这四个点是凸多边形那么费马点就是对角线的交点,当时凹多边形的时候,费马点为凹进去的那个点。AC代码:Accepted36940MS原创 2013-10-02 09:43:02 · 1911 阅读 · 0 评论 -
UVA 11806 - Cheerleaders (容斥原理)
传送门:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=226&page=show_problem&problem=2906 题意:给你n*m的方格,放置k个石子,每个方格最多放一个石子,要求第一行,最后一行,第一列,最后一列都有石子,问放置着k个石子有多少种方法。题解:利用容斥原创 2013-09-18 15:26:27 · 1104 阅读 · 0 评论 -
UVA 11401 - Triangle Counting (数学题)
传送门:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=26&page=show_problem&problem=2396 题意:从1~n中选出3个整数,使得他们三边能组成三角形,给定一个n,问能组成多少个不同的三角形?题解:n最大能达到1000000,所以只能用O(n)来解决。原创 2013-09-18 10:08:34 · 1125 阅读 · 0 评论 -
HDU 2973 YAPTCHA (数论)
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=2973 题意:给你一个n,根据公式求出结果然后直接输出结果。题解:这里要用到一个数论定理——威尔逊定理当且仅当p为素数时:( p -1 )! ≡ -1 ( mod p )也可以写作:若p为质数,则p可整除(p-1)!+1对于此题,判断3i+7是否为质数即可。AC代码:#原创 2013-09-19 10:46:43 · 1592 阅读 · 0 评论 -
新视野OJ 2818: Gcd
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2818题意:给你一个n,问你存在多少对1题解:假设gcd(x,y)=p,那么可以转化为存在多少对1gcd(x,y)=1也就是欧拉定理,求n/p前面欧拉值得和即为答案。所以枚举2-n之间的素数,然后求和即可。AC代码:2818原创 2013-10-05 15:57:48 · 1481 阅读 · 0 评论 -
新视野OJ 2190 [SDOI2008]仪仗队 (数论-gcd)
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2190题解:让你求0AC代码:2190Accepted1896 kb40 msC++/Edit1517 B#include #include #include #include #include #i原创 2013-10-06 10:37:14 · 1369 阅读 · 0 评论 -
UVA 11038 - How Many O's? (数学题)
传送门:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&category=470&problem=1979 题意:求[m,n]中有多少个0题解:分位数分析:n的第i位不为0=n左边的数(高位)*10^(i-1)n的第i位为0 =(n左边的数-1)*10^原创 2013-09-24 10:55:32 · 1645 阅读 · 0 评论 -
连分数
对于连分数,我们可以表示为:对于无理数,ai一定是无穷数列,反之,对于有理数,ai一定是有穷数列。对于上式中的p与q,有递推式:而对于sqrt(n)来说,ai中的首项为一个单独的整数,除了它后面的都会循环。下面我们来分析一个关于连分数的题目。题目:连分数原创 2013-08-19 14:25:37 · 1485 阅读 · 0 评论 -
HDU 2650 A math problem (高斯整数环)
我们把集合:叫做高斯整数环,其中Z表示通常的整数环,而用表示复数域上的整数环。 那么什么是环呢?就是通过加减乘三种运算后,仍然能满足本身性质的就叫做环。 范的定义:设,,定义a的范为 设,则 (1)为非负整数,并且 (2) (3)若,则 逆的定义:设,如果存原创 2013-08-19 10:25:24 · 2512 阅读 · 0 评论