初解linux字符设备驱动的组成

原创 2012年03月25日 21:16:15

怀着激动的心情,翻开买了N长时间的驱动参考书,现在终于有机会可以在实践任务运用它了。对于驱动这个玩意,还没接触之前,感觉是那么的神秘,但是,一旦接触后,由于N多原因,它还是那么神秘。所以,要逐步逐步的去征服它。不管别人怎么说难或者简单,它都在那里,只有你会或者不会。

下面就慢慢走近它吧,看看它到底是啥玩意。

首先由字符设备说起,它是驱动中稍微简单一点的,那现在就看看它的“五脏“是哪些吧。

 //设备结构体
  struct xxx_dev_t
  {
	struct cdev	cdev;
	...	
  } xxx_dev;

//设备驱动模块加载函数
  static int _ _init xxx_init(void)
  {	...	
	cdev_init(&xxx_dev.cdev, &xxx_fops);	//初始化 cdev
	xxx_dev.cdev.owner =	THIS_MODULE;
	//获取字符设备号	
	if (xxx_major)	
	{	
	register_chrdev_region(xxx_dev_no, 1, DEV_NAME);
        }
	else
	{
	alloc_chrdev_region(&xxx_dev_no, 0, 1, DEV_NAME);
	}
	ret = cdev_add(&xxx_dev.cdev, xxx_dev_no, 1); //注册设备
	...
   }

/*设备驱动模块卸载函数*/
 static void _ _exit xxx_exit(void)
 {
	unregister_chrdev_region(xxx_dev_no, 1); //释放占用的设备号
	cdev_del(&xxx_dev.cdev); //注销设备
	...
 }

	/* 读设备*/
	ssize_t xxx_read(struct file *filp, char _ _user *buf, size_t count,loff_t*f_pos)
	{
	...
	copy_to_user(buf, ..., ...);
	...
	}

       /* 写设备*/
        ssize_t xxx_write(struct file *filp, const char _ _user *buf, size_t count,loff_t *f_pos)
	{	
	...	
	copy_from_user(..., buf, ...);
	...
        }

         /* ioctl 函数  */
        int xxx_ioctl(struct inode *inode, struct file *filp, unsigned int cmd,nsigned long arg)
	{	
	...	
	switch	(cmd)
	{	
	case XXX_CMD1:
	...
	break;
	case XXX_CMD2:
	...
	break;
	default:
	/* 不能支持的命令  */
	return  - ENOTTY;
	}
	return 0;
	}

字符设备驱动文件操作结构体模块:
 struct file_operations xxx_fops =
 {
	.owner = THIS_MODULE, //这不是一个操作,它是一个指向拥有这个结构模块的指针
	.read = xxx_read,
	.write = xxx_write,
	.ioctl = xxx_ioctl,
	...	
 };

以上都是主要组成部分,具体可以参见《linux设备驱动开发详解》,那里有详细说明,这只是个简介,不过模块都是类似的。



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Linux字符设备驱动入门(二)——加入ioctl功能

平台:VMware 7.0 + Linux ubuntu 3.0.0-12-generic 编译器:gcc 参考资料:LDD 3 功能:实现ioctl功能           在Linux...

linux 字符设备驱动

Linux内核编程七:字符设备驱动

个人总结PDF截图,特此声明!

Linux字符设备驱动总结

  • 2011-11-29 00:26
  • 23KB
  • 下载

Linux 字符设备驱动开发--内存读写操作

学习Linux的累计时间已经有两年多了,工作关系,学习的过程总是断断续续的,现在整理一下,下面要分享的是一个简单的linux驱动程序,没有什么实际的用处,像hello wold!程序一样,我们简单体会...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)