Codeforces 148D 概率DP

D. Bag of mice
time limit per test
 2 seconds
memory limit per test
 256 megabytes
input
 standard input
output
 standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Sample test(s)
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins

/*题意: 
原来袋子里有w只白鼠和b只黑鼠 
龙和公主轮流从袋子里抓老鼠。谁先抓到白色老鼠谁就赢。 
王妃每次抓一只老鼠,龙每次抓完一只老鼠之后,会有一只老鼠跑出来。(注意是龙抓完后) 
每次抓老鼠和跑出来的老鼠都是随机的。 
如果两个人都没有抓到白色老鼠则龙赢。王妃先抓。 
问王妃赢的概率。 
 
分析:假设dp[i][j]表示轮到王妃抓老鼠时面对剩余i只白鼠和j只黑鼠的胜率 
则dp[i][j]可以转化到以下四种情况: 
1.王妃胜利,转化概率为i/(i+j) 
2.dp[i-1][j-2]---王妃抓黑鼠,龙抓黑鼠,逃跑白鼠,转化概率是j/(i+j) * (j-1)/(i+j-1) * i/(i+j-2) 
3.dp[i-1][j-1]---王妃抓到黑鼠,龙抓到白鼠,输!,转化概率为j/(i+j) * i/(i+j-1)//这不能到达,到达就输了  
4.dp[i][j-3]--王妃抓到黑鼠,龙抓到黑鼠,逃跑黑鼠,转化率为j/(i+j) * (j-1)/(i+j-1) * (j-2)/(i+j-2)  
*/  
#include<iostream>
#include<stdio.h>
using namespace std;
const int Max=1000+10;
int w,b;
double dp[Max][Max];

//只考虑公主赢的情况。
int main()
{
    while(cin>>w>>b)
    {
        for(int i=1;i<=w;i++)
        {
            dp[i][0]=1;//有白鼠无黑鼠,公主抓时肯定赢
        }
        for(int i=1;i<=b;i++)
        {
            dp[0][i]=0;//只有黑鼠,公主只能输
        }
        for(int i=1;i<=w;i++)
        {
            for(int j=1;j<=b;j++)
            {
                dp[i][j]=i*1.0/(i+j);
                if(j>=2)
                    dp[i][j]+=j*1.0/(i+j) * (j-1)*1.0/(i+j-1) * i*1.0/(i+j-2)*dp[i-1][j-2];
                if(j>=3)
                    dp[i][j]+=j*1.0/(i+j) * (j-1)*1.0/(i+j-1) * (j-2)*1.0/(i+j-2) * dp[i][j-3];
            }
        }
       // cout<<dp[w][b]<<endl;
        printf("%.9f\n",dp[w][b]);
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值