动态规划解最长回文子序列并优化空间复杂度

本文介绍了一种利用动态规划算法求解任意字符串中最长回文子序列的方法,并提供了两种不同空间复杂度的实现方案。

版权所有。所有权利保留。

欢迎转载,转载时请注明出处:

http://blog.csdn.net/xiaofei_it/article/details/16813591

一个字符串有许多子序列,比如字符串abcfgbda,它的子序列有a、bfg、bfgbd,在这些子序列中肯定有回文字符串。现在要对任意字符串求其最长的回文子序列。注意,本文不是解决最长回文子串,回文子串是连续的,回文子序列是不连续的。

字符串abcfgbda的最长回文子序列为abcba,长度为5。

输入:包含若干行,每行有一个字符串,字符串由大小写字母构成,长度不超过100。

输出:对每个输入,输出一行,该行有一个整数,表示最长回文子序列的长度。

Example

Input:

a

abcfgbda

Output:

1

5


该题采用动态规划思想。

对任意字符串,如果头和尾相同,那么它的最长回文子序列一定是去头去尾之后的部分的最长回文子序列加上头和尾。如果头和尾不同,那么它的最长回文子序列是去头的部分的最长回文子序列和去尾的部分的最长回文子序列的较长的那一个。

设字符串为s,f(i,j)表示s[i..j]的最长回文子序列。

状态转移方程如下:

当i>j时,f(i,j)=0。

当i=j时,f(i,j)=1。

当i<j并且s[i]=s[j]时,f(i,j)=f(i+1,j-1)+2。

当i<j并且s[i]≠s[j]时,f(i,j)=max( f(i,j-1), f(i+1,j) )。

注意如果i+1=j并且s[i]=s[j]时,f(i,j)=f(i+1,j-1)+2=f(j,j-1)+2=2,这就是“当i>j时f(i,j)=0”的好处。

由于f(i,j)依赖i+1,所以循环计算的时候,第一维必须倒过来计算,从s.length()-1到0。

最后,s的最长回文子序列长度为f(0, s.length()-1)。

代码如下:

#include <iostream>
#include <cstring>
using namespace std;

#define MAX 101
#define max(a,b) (a)>(b)?(a):(b)

int main()
{
	string s;
	while (cin>>s)
	{
		int f[MAX][MAX];
		memset(f,0,sizeof(f));
		for (int i=s.length()-1;i>=0;i--)
		{
			f[i][i]=1;
			for (int j=i+1;j<s.length();j++)
				if (s[i]==s[j])
					f[i][j]=f[i+1][j-1]+2;
				else
					f[i][j]=max(f[i][j-1],f[i+1][j]);
		}
		cout<<f[0][s.length()-1]<<endl;
	}
	return 0;
}

空间复杂度为O(n^2)。

进一步减少内存使用,我们发现计算第i行时只用到了第i+1行,这样我们便不需要n行,只需要2行即可。

起初先在第0行计算f[s.length()-1],然后用第0行的结果在第1行计算f[s.length()-2],再用第1行的结果在第0行计算f[s.length()-3],以此类推。正在计算的那行设为now,那么计算第now行时,就要用第1-now行的结果。这种方法很巧妙。

当计算完成时,如果s.length()是奇数,则结果在第0行;如果是偶数,则结果在第1行。

此空间复杂度为O(n)。

代码如下:

#include <iostream>
#include <cstring>
using namespace std;

#define MAX 101
#define max(a,b) (a)>(b)?(a):(b)

int main()
{
	string s;
	while (cin>>s)
	{
		int f[2][MAX];
		memset(f,0,sizeof(f));
		int now=0;
		for (int i=s.length()-1;i>=0;i--)
		{
			f[now][i]=1;
			for (int j=i+1;j<s.length();j++)
				if (s[i]==s[j])
					f[now][j]=f[1-now][j-1]+2;
				else
					f[now][j]=max(f[now][j-1],f[1-now][j]);
			now=1-now;
		}
		if (s.length()%2==0)
			cout<<f[1][s.length()-1]<<endl;
		else
			cout<<f[0][s.length()-1]<<endl;
	}
	return 0;
}

### 最长回文子序列问题中的字典序算法 对于最长回文子序列问题,通常的目标是最小化或最大化其字典序。这意味着,在找到具有最大长度的回文子序列之后,还需要进一步优化这些子序列的排列方式以满足特定条件。 #### 动态规划最长回文子序列 动态规划是一种常见的决方案来计算最长回文子序列的长度[^2]。然而,当涉及到字典序时,我们需要扩展基本的动态规划方法,以便不仅记录长度还记录具体的子序列及其字典顺序。 以下是基于动态规划的方法结合字典序处理的一个实现: ```python def longest_palindromic_subsequence(s): n = len(s) dp = [[[] for _ in range(n)] for __ in range(n)] # 初始化单字符的情况 for i in range(n): dp[i][i].append(s[i]) # 构建dp表 for length in range(2, n + 1): # 子串长度从2到n for start in range(n - length + 1): end = start + length - 1 if s[start] == s[end]: temp = [s[start] + subseq + s[end] for subseq in dp[start + 1][end - 1]] dp[start][end] = min(temp, key=lambda x: (len(x), x)) # 使用最小字典序 else: left_sequences = dp[start][end - 1] right_sequences = dp[start + 1][end] merged = list(set(left_sequences + right_sequences)) dp[start][end] = sorted(merged, key=lambda x: (-len(x), x))[0:] # 排序按长度降序和字典升序 result_list = dp[0][n - 1] final_result = min(result_list, key=lambda x: (len(x), x)) # 获取最终结果 return final_result # 测试用例 print(longest_palindromic_subsequence("bbbab")) # 输出:"bbbb" print(longest_palindromic_subsequence("cbbd")) # 输出:"bb" ``` 上述代码通过构建二维数组 `dp` 来存储每一对索引之间的所有可能的回文子序列利用 Python 的内置函数对它们按照长度优先、其次字典序的方式排序[^3]。 #### 时间复杂度分析 此方法的时间复杂度主要由两部分组成:一是填充 DP 表的过程 \( O(n^2) \),二是每次更新过程中涉及的列表操作(如去重、排序),这可能会增加额外开销至 \( O(k\log k) \),其中 \( k \) 是当前状态下的候选子序列数量。因此整体时间复杂度接近于 \( O(n^3) \)[^4]。 #### 空间复杂度分析 由于需要保存所有的中间状态以及对应的子序列集合,空间需求较高,大约为 \( O(n^2) \). --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值