Tslib主要滤波算法分析

转载 2011年01月17日 22:54:00

tslib背景:

在采用触摸屏的移动终端中,触摸屏性能的调试是个重要问题之一,因为电磁噪声的缘故,触摸屏容易存在点击不准确、有抖动等问题。
Tslib是一个开源的程序,能够为触摸屏驱动获得的采样提供诸如滤波、去抖、校准等功能,通常作为触摸屏驱动的适配层,为上层的应用提供了一个统一的接口。

tslib插件:

pthres 为Tslib 提供的触摸屏灵敏度门槛插件;variance 为Tslib 提供的触摸屏滤波算法插件;dejitter 为Tslib 提供的触摸屏去噪算法插件;linear 为Tslib 提供的触摸屏坐标变换插
件。
触摸屏驱动为与硬件直接接触部分,为上层的Tslib 提供最原始的设备坐标数据,并可以配置采样间隔、屏幕灵敏度等。采样间隔决定了单位时间内的采样数量,在其他参数不变的
情况下,采样间隔越小意味着单位时间内的采样数量越多,也就意味着采样越逼真、越不容易出现采样信息丢失如输入法书写时丢笔划的情况,但因为噪声的影响,采样间隔越小同时
也意味着显示出来的图形的效果越差。
Tslib 为触摸屏驱动和应用层之间的适配层,其从驱动处获得原始的设备坐标数据,通过一系列的去噪、去抖、坐标变换等操作,来去除噪声并将原始的设备坐标转换为相应的屏幕
坐标。

tslib接口:
在tslib 中为应用层提供了2 个主要的接口ts_read()和ts_read_raw(),其中ts_read()为正常情况下的借口,ts_read_raw()为校准情况下的接口。

正常情况下,tslib 对驱动采样到的设备坐标进行处理的一般过程如下:
raw device --> variance --> dejitter --> linear --> application
module module module
校准情况下,tslib 对驱动采样到的数据进行处理的一般过程如下:
raw device--> Calibrate
由于各种相关期间的影响,在不同的硬件平台上,相关参数可能需要调整。以上参数的相互关系为:采样间隔越大,采样点越少,采样越失真,但因为信息量少,容易出现丢笔划
等丢失信息情况,但表现出来的图形效果将会越好;去噪算法跟采样间隔应密切互动,采样间隔越大,去噪约束应越小,反之采样间隔越小,去噪约束应越大。去抖算法为相对独立的
部分,去抖算法越复杂,带来的计算量将会变大,系统负载将会变重,但良好的去抖算法可以更好的去除抖动,在进行图形绘制时将会得到更好的效果;灵敏度和ts 门槛值为触摸屏的
灵敏指标,一般不需要进行变动,参考参考值即可。

过滤插件分析:

Variance:触摸屏滤波算法

问题:一些触摸屏取样非常粗略,因此,即使你持着笔不放,样本可能不同,有时会大幅增加。最坏的情况是由于采样的时候电噪声的干扰,可大大脱离现实笔的位置不同,这会导致鼠标光标移动“跳”起来,然后返回回来。
解决方法:延迟一个时隙采样数据。如果我们看到最后采样读出来的数据太多的不同,我们将其标示为“可疑”。如果下一个采样读取的数据接近“可疑” 情况出现之前的数据,“可疑”数据将被丢弃。否则我们认为笔正在进行一个快速的笔移动动作,“可疑”数据的采样和出现”可疑”数据之后的采样都将通过。

重要算法分析:

static int variance_read(struct tslib_module_info *info, struct ts_sample *samp, int nr)
{
struct tslib_variance *var = (struct tslib_variance *)info;
struct ts_sample cur;
int count = 0, dist;

while (count < nr) {
如果采样数据被标记为“提交噪音”状态,将当前采样数据相关结构体赋予噪音状态,将清除标志位。
if (var->flags & VAR_SUBMITNOISE) {
cur = var->noise;
var->flags &= ~VAR_SUBMITNOISE;
} else {
如果如果采样数据没有被标记为“提交噪音”,继续采样数据。
if (info->next->ops->read(info->next, &cur, 1) < 1)
return count;
}
如果当前没有压力值,处于没有笔触摸或者笔释放状态,但是却收到笔按下消息,表明为收到噪音干扰,
所有当笔一释放就立即清除队列,否则之前的层将捕抓到笔起来的消息,但是已经太晚,如果
info->next->ops->read()出现堵塞,将出现这种情况。
if (cur.pressure == 0) {
/* Flush the queue immediately when the pen is just
* released, otherwise the previous layer will
* get the pen up notification too late. This
* will happen if info->next->ops->read() blocks.
*/
if (var->flags & VAR_PENDOWN) {
var->flags |= VAR_SUBMITNOISE;
var->noise = cur;
}
/* Reset the state machine on pen up events. */
复位笔起来事件状态标记位
var->flags &= ~(VAR_PENDOWN | VAR_NOISEVALID | VAR_LASTVALID);
goto acceptsample;通知接受采样数据
} else
var->flags |= VAR_PENDOWN;通知笔按下
如果标记位与“VAR_LASTVALID"状态不同,进行下一个采样。
if (!(var->flags & VAR_LASTVALID)) {
var->last = cur;
var->flags |= VAR_LASTVALID;
continue;
}
如果为笔按下事件
if (var->flags & VAR_PEN DOWN) {
/* Compute the distance between last sample and current */
计算上一次的采样数据与当前采样数据的距离
dist = sqr (cur.x - var->last.x) +
sqr (cur.y - var->last.y);

if (dist > var->delta) {如果误差大于默认值,比如30。

视之前的采样为噪音?可疑?
/* Do we suspect the previous sample was a noise? */
if (var->flags & VAR_NOISEVALID) {
但是如果之前的采样已经是可疑状态,视为快速的笔移动触发动作。
/* Two "noises": it's just a quick pen movement */
samp [count++] = var->last = var->noise;
var->flags = (var->flags & ~VAR_NOISEVALID) |
VAR_SUBMITNOISE;
} else
如果之前的采样并不是可疑状态,视为可疑状态.
var->flags |= VAR_NOISEVALID;
/* The pen jumped too far, maybe it's a noise ... */
var->noise = cur;
continue;
} else
var->flags &= ~VAR_NOISEVALID;采样的数据属于正常数据.
}

acceptsample:
#ifdef DEBUG
fprintf(stderr,"VARIANCE----------------> %d %d %d/n",
var->last.x, var->last.y, var->last.pressure);
#endif
samp [count++] = var->last;
var->last = cur;
}

return count;
}

dejitter 去噪插件分析:
问题:一些触摸屏从ADC获取X/Y坐标采样值,他们的最低位带有很大的噪音干扰,这就导致了触摸屏输出值的抖动。
比如我们保持着按某一点,我们会得到许多的X/Y坐标采样,他们相近但是不相等。同时如果我们试图在一个画图程序里面去画一个直线,
我们将得到一个充满“毛刺“的直线。
解决:我们对最后几个值应用一个重量平滑滤波,从而去除输出“毛刺”。我们发现坐标发生重大变化,我们会重新设置笔位置的积压,从而
避免平滑不应该要平滑的坐标。当然,这些都是假设所有噪音都已经由底端过滤器滤波过了,例如variance模块。
工作原理:
该过滤器的工作原理如下:我们掌握最新的N样本轨道,我们不断跟踪最新的N个采样,根据一定的重量求平均。最旧的数据有最少的重量,最近的数据
有最大的重量。这有助于消除抖动,同时不影响响应时间,因为我们为每一个输入采样输出一个输出样本,笔移动会变得更加顺畅。

重要算法分析:
为了让事情简单(避免误差),我们确保SUM(重量)=2次方。同时当我们有不到默认采样数量的时候,我们必须知道怎么去近似测试。
static const unsigned char weight [NR_SAMPHISTLEN - 1][NR_SAMPHISTLEN + 1] =
{
/* The last element is pow2(SUM(0..3)) */
{ 5, 3, 0, 0, 3 }, /* When we have 2 samples ... */
{ 8, 5, 3, 0, 4 }, /* When we have 3 samples ... */
{ 6, 4, 3, 3, 4 }, /* When we have 4 samples ... */
};

static void average (struct tslib_dejitter *djt, struct ts_sample *samp)
{
const unsigned char *w;
int sn = djt->head;
int i, x = 0, y = 0;
unsigned int p = 0;

w = weight [djt->nr - 2];找出与重量数组相对应的数据,例如如果是第一次采样就没有,如果是第二次采样,就对应{ 5, 3, 0, 0, 3 },依此类推。

for (i = 0; i < djt->nr; i++) {
x += djt->hist [sn].x * w [i];
y += djt->hist [sn].y * w [i];
p += djt->hist [sn].p * w [i];
sn = (sn - 1) & (NR_SAMPHISTLEN - 1);记录每一次采样的序号
}

samp->x = x >> w [NR_SAMPHISTLEN];求出平均值
samp->y = y >> w [NR_SAMPHISTLEN];
samp->pressure = p >> w [NR_SAMPHISTLEN];
#ifdef DEBUG
fprintf(stderr,"DEJITTER----------------> %d %d %d/n",
samp->x, samp->y, samp->pressure);
#endif
}

static int dejitter_read(struct tslib_module_info *info, struct ts_sample *samp, int nr)
{
struct tslib_dejitter *djt = (struct tslib_dejitter *)info;
struct ts_sample *s;
int count = 0, ret;

ret = info->next->ops->read(info->next, samp, nr);
for (s = samp; ret > 0; s++, ret--) {
if (s->pressure == 0) {
/*
* Pen was released. Reset the state and 如果笔释放,复位状态标准,同时丢弃所有历史事件。
* forget all history events.
*/
djt->nr = 0;
samp [count++] = *s;
continue;
}

/* If the pen moves too fast, reset the backlog. */ 如果笔移动太快,复位积压
if (djt->nr) {
int prev = (djt->head - 1) & (NR_SAMPHISTLEN - 1);
if (sqr (s->x - djt->hist [prev].x) +
sqr (s->y - djt->hist [prev].y) > djt->delta) { 如果之前的x的平方距离值与之前的y的平方距离值加入门槛值,提示超过门槛值,丢弃,复位。
#ifdef DEBUG
fprintf (stderr, "DEJITTER: pen movement exceeds threshold/n");
#endif
djt->nr = 0;
}
}

djt->hist[djt->head].x = s->x;
djt->hist[djt->head].y = s->y;
djt->hist[djt->head].p = s->pressure;
if (djt->nr < NR_SAMPHISTLEN) 如果采样数小于默认采样数,继续执行
djt->nr++;

/* We'll pass through the very first sample since
* we can't average it (no history yet).
*/
if (djt->nr == 1) 如果这是第一次采样,没有历史或者旧采样数据,直接赋值。
samp [count] = *s;
else { 如果不是第一次采样,就执行平均函数,求得经过平均后的采样值。
average (djt, samp + count);
samp [count].tv = s->tv;
}
count++;

djt->head = (djt->head + 1) & (NR_SAMPHISTLEN - 1);记录采样的序号
}
return count;
}

总结:经过分析varience滤波模块插件和dejitter去抖模块插件,我们知道如下:
1:varience是最低层滤波插件,方差滤波器,试图做得最好,过滤掉由ADC采样过来的随机噪音,通过限制某些采样的运动速度,例如:
笔不应该比一些门槛值快一些。
主要参数:门槛值delta
求出之前的采样点和当前的采样点的平方距离(X2-X1)^2 + (Y2-Y1)^2),用来确定两个样本是“近”还是“远”。如果以前和目前的样本之间的距离是'远',
样品被标记为'潜在噪音'或者“可疑“,但这并不意味着它将被丢弃。如果下次的采样接近于它,我们将视是一次普通的快速移动动作。同时如果“潜在噪音"之后的采样比之前讨论的
采样都“远”,也将认为出现了一次普通的快速移动动作。如果出现“潜在噪音”之后的采样和出现“潜在噪音“之前的采样相近,我们将丢弃”潜在噪音 “这次数据,认为它为要过滤的噪音。
2:dejitter去抖模块插件
去除X/Y坐标的抖动,这是通过使用一个加权平滑滤波器实现的。最近的采样有最重的重量,早期的采样有重量轻的重量,这使得实现1:1的输入-输出速率。
主要参数:门槛值delta
两个采样之间的平方距离,(X2-X1)^2 + (Y2-Y1)^2),即定义了'快速运动'的门槛。如果笔移动快,平滑笔的动作是不合适的,另外,快速运动任何时候都不是准确的。所以如果检测到了快速运动,
该过滤模块只是简单地丢弃积压和复制输入到输出。

各向异性滤波算法+数学模型分析

matlab练习程序(各向异性扩散)http://www.cnblogs.com/tiandsp/archive/2013/04/18/3029468.html 主要是用来平滑图像的,克服了高斯模...

粒子滤波算法程序分析

此文转载自http://lgtip.blog.tianya.cn。 参考的程序是Rob Hess(http://web.engr.oregonstate.edu/~hess/)实现的粒子滤波经过饮水...

双边滤波算法数学模型分析

双边滤波器是什么? 正态模型的好处就是距离最近关系最强烈! 双边滤波(Bilateral filter)是一种可以保边去噪的滤波器,跟各向异性滤波算法有着异曲同工之妙。之所以可以达到此去噪效果,该滤波...

【目标跟踪】基于粒子滤波算法的目标跟踪:Rob Hess源码分析

目标跟踪应用非常广泛,而是粒子滤波算法是众多跟踪算法中还算可以的一种,粒子滤波是一种序列蒙特卡罗滤波方法,其实质是利用一系列随机抽取的样本(即粒子)来替代状态的后验概率分布。在此不打算介绍和推理繁杂的...

无先导卡尔曼滤波算法分析

  • 2011年05月17日 12:45
  • 3.1MB
  • 下载

四轴飞行器组合导航非线性滤波算法

转载自http://www.stmcu.org/module/forum/thread-605855-1-1.html 四轴飞行器是一种特殊结构的无人机(Unmanned AerialVehicle...

C滤波算法分析

  • 2015年04月16日 16:22
  • 112KB
  • 下载

双边滤波算法的原理、流程、实现及效果

一、引言          双边滤波在图像处理领域中有着广泛的应用,比如去噪、去马赛克、光流估计等等,最近,比较流行的Non-Local算法也可以看成是双边滤波的一种扩展。自从Tomasi et...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Tslib主要滤波算法分析
举报原因:
原因补充:

(最多只允许输入30个字)