Multi-Instance Learning (MIL) 和Multi-Pose Learning (MPL)是CV的大牛Boris Babenko at UC San Diego提出来的,其思想可以用下面一幅图概况。MIL是指一个对象的学习实例可能有很多种情况,学习的时候不是用一个精确的标注对象来学习,而是用一个对象的多个实例组成的“包”来学习;而MPL是指一个对象会有多个姿态(Pose),学习的时候用一个分类器常常难以达到很好的效果,所以可以训练多个分类器来分别学习不同的Pose。其描述的都是对一个对象多种情况的同时学习和对齐的策略,也就是MIL是“adjusting training samples so they lie in correspondence”,而MPL是“separating the data into coherent groups and training separate classifiers for each”。

上图中右边为MIL的学习情况,每一行为一个对象的学习数据;左边为MPL的学习情况,每行为一个对象的不同pose学习数据,而每种颜色的框为训练的一个class。MIL被提出以后应用很广,而貌似MPL只有为数不多的引用,一篇《Multi-Cue Onboard Pedestrian Detection》应用的MPL但也没有具体的公式。MPL与传统的Boost方法的不同就是使用如下组合的y代替传统的y,其中k表示多个class,也就是有一个class识别为1,则判断结果为1。
<
模式识别:MIL、MPL与MCL解析

本文介绍了Multi-Instance Learning (MIL)、Multi-Pose Learning (MPL)和Multi-Class Learning (MCL)的概念,这三种方法在计算机视觉中的应用。MIL通过对象的不同实例进行学习,MPL关注对象的不同姿态,而MCL则训练多个类别。MCL的迭代更新方法更清晰,能有效处理样本分类。文章引用了相关研究并展示了MCL在数据分类上的优秀效果。
最低0.47元/天 解锁文章
1746

被折叠的 条评论
为什么被折叠?



