- 博客(68)
- 资源 (9)
- 问答 (1)
- 收藏
- 关注
原创 【量化交易笔记】7.基于随机森林预测股票价格
机器学习在量化交易主要有两方面的应用,第一就是用时间序列的日频数据来预测未来的股价,第二 用截面数据来预测收益,现在量化基因的因子都基于这个模型。接下来,我分别来说明,机器学习分成预测结果分成分类和回归。本章,就以随机森林来做未来某天的股价,是一种典型的回归分析方法,如果预测股价的涨跌就是分类问题。在这里有很多坑,我帮小伙伴一一填平。这里只是预测的方法,想应用到真实的预测,以此来作股票买卖,我在这里说,别,千万别,…。
2023-05-31 22:48:08
433
原创 【量化交易笔记】6.布林带的实现
布林线(Bollinger Bands,BOLL)又称布林带,是约翰·布林(John Bollinger)提出的一种行情价格频带分轨,是根据统计学中的标准差原理,设计出来的一种非常实用的技术指标。布林线也建立在移动平均线之上,但包含最近的价格波动,使指标更能适应不同的市场条件。布林线通常可由上轨(压力线)、中轨(行情平衡线)和下轨(支撑线)三条轨道线组成,属于通道式指标或路径式指标[1]。股票的布林带指标是一种基于统计学的技术指标,用于衡量股票价格在一定时间内的波动范围。
2023-05-16 22:04:42
323
原创 【量化交易笔记】5.SMA,EMA 和WMA区别
股票中的SMA,EMA和WMA是常用的技术分析指标。这些指标基于历史股价计算得出,可以帮助投资者了解股票的趋势,为决策提供依据。虽然它们都是平均值算法,但它们之间还是有一些区别的。
2023-05-01 21:58:42
780
1
原创 【量化交易笔记】4.移动平均值的实现
本部分讲解移动平均MA原理,实现,并通过K 线图中的各类均线,如 5日均线(周),10日均线(半月),20日均线(月),250日均线(年)。在肌市多头排列,空头排列这些专业名称,我在以后讲解都需要用到移动平均值。
2023-03-09 20:37:37
575
原创 【量化交易笔记】2.数据本地化存储(CSV)
通过本地化的数据表形式保存数据,这样大大方便以后数据的操作。为了更高效的操作数据,下一节介绍数据库方式存放以上数据,基本的思路是一样的,只是存储方式不一样而已。
2023-03-07 19:51:25
541
原创 【量化交易笔记】1.数据来源
三个平台均可以满足我们入门级需求,根据个人喜好进行选择,如后续想对基金,期货做量化研究,不建议使用 baostock;专栏仅仅是A股,因此就选择 baostock 工具进行研究。小伙伴们肯定不会仅仅研究一两支股票,如进行选股操作,因此需要下载大量的本地数据,所以这里有两种方式,一种下载保存为csv格式文件;另一种方式,用数据库的方式保存。下一节,我将带大家学习保存数据的两种方式。
2023-03-06 18:10:24
937
原创 【量化交易笔记】0.开篇
有位小伙伴找我,说想学量化,我说欢迎一起学,我问他目的,他说“ 想炒股赚钱”,“那你会什么?”,“我会编程!”,其实有这两点就够了。其实量化是有门槛的,需要掌握一些基本的知识,如数学知识,金融知识,财务知识,同时也要具有一定的编程能力。本人作为一个编程爱好者,来学习量化,本人认为 “**有赚钱的动力和编程的能力**”。这一篇作为量化交易学习的开篇,计划从以下几方面来学习,如涉及到软件安装,不会做专门的解决,自己自行百度,但其中的坑也有相应的说明。会首重放在代码实现上,尽量用少的文字,附大量实例。
2023-03-05 09:55:57
44
原创 CDA Level Ⅲ 模拟题(二)
即IDF可以反映w的独特性。ABCD文本分类 : 在给定已知的分类体系下,根据文本特征构建有监督机器学习模型,达到识别文本类型或内容主旨的目的. 文本关联 : 它是传统关联规则方法在文本挖掘上的应用,包含文档类型关联、词汇关联、实体关联等内容. 文本聚类: 就是从众多的文档中把一些内容相似的文档聚为一类的技术,同类的文本相似度较大,而不同类的文本相似度较小,是一种无监督的机器学习方法. 文本摘要: 就是对数据内容进行提炼与总结,以简洁、直观的摘要来概括所关注的主要内容,方便我们快速地了解与浏览内容.
2023-02-05 23:24:47
207
原创 CDA Level Ⅲ 模拟题(一)
TAN 分类器 是由Friedman 等人提出的一种树状贝叶斯网络, 是朴素贝叶斯分类器的一种改进模型 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程 LSA是1988年S.T. Dumais等提出的一种新的信息检索模型,它使用统计计算的方法对大量的文本集进行分析,提取出词与词之间潜在的语义结构,并用这种潜在的语义结构表示词和文本,达到消除词之间的相关性和简化文本向量实现降维的目的 TWO-STEP是一种分层群集算法。
2023-02-05 23:23:22
237
原创 CDA Level I 模拟题(7)多选题【附答案解析】
CRISP-DM模型是应用最广泛的KDD过程模型,下面属于CRISP-DM模型的阶段有()A.业务理解B.数据理解C.数据准备、建模、模型评估D.模型发布2/20表结构是数据分析中常用的数据结构,以下属于表结构分析工具的是A.DB2B.Power BIC.ExcelD.PPT3.收集多源数据是进行数据分析工作中的重要步骤之一,以下可以成为表结构数据数据源的选项有哪些A.CSV格式的数据文件B.数据库C.Excel文件D.网页数据4/20某电商订单表中的主键为订单号,根据业务常识判
2022-06-01 18:57:28
581
原创 CDA Level I 模拟题(6)案例分析题【附答案解析】
案例分析题练习题 【单选题】一、表t1中有id,name,salary三列,如果t1是一个论坛的发帖信息表,id是发帖人的编号,name是帖子的标题,salary是每次发帖论坛奖励的分数。1表示更新t1表中字段内容的语句是A.create table t1(id int,name char(30),salary int);B.drop table t1;C.create view v_t1 as select id,name from t1;D.update t1 set name=’lixi
2022-06-01 18:56:40
628
原创 CDA Level I 模拟题(5)【附答案解析】
练习题 【单选题】以上订单表与订单详情表间用于连接的公共字段应是____A.两表的单号B.两表的客户IDC.单金额与产品金额D.没有公共字段两表连接后使用左连接进行查询后的总行数是____A.5B.6C.4D.83.建立如下数据库表: CREATE TABLE department( departid int not null primary key, deptname varchar(20) not null ); CREATE TABLE employee( emp
2022-05-30 22:27:13
493
原创 CDA Level I 模拟题(4)【附答案解析】
练习题 【单选题】1.某电商的每笔交易信息逐行记录在订单表中,在订单表中能否使用average求客户购买金额的总平均值A.可以B.不行C.无多次购物行为的客户存在时可以D.有多次购物行为的客户存在时可以2.在记录某电商交易行为内容的订单表中求客户购买金额总平均值应使用的公式是(客户有多次购买行为)A.SUM/COUNTB.直接用AverageC.SUM/DISTINCTCOUNTD.SUM/AVERAGE3.同环比是业务描述性分析中针对时间维度使用的重要指标,以下选项中不适用于做同环比
2022-05-29 15:12:46
668
原创 CDA Level I 模拟题(3)【附答案解析】
练习题 【单选题】1.四象限分析法帮助我们理解分析项目的特征,应用四象限分析法对客户贡献价值进行描述时可以使用的横纵轴是A.到店时间、消费金额B.消费金额、购买数量C.消费金额、消费频次D.消费渠道、到店时间2.某电商平台进行分析时,不能直接描述商品销售情况好坏的指标是A.库存周转率B.库销比C.动销金额D.动销天数3.通过数据分析为某电商平台定位核心用户群体可以使用哪种分析模型A.5W2HB.帕累托分析C.漏斗模型D.AB测试4.不适合用销量作为度量使用的是A.汽车行业市
2022-05-28 16:56:11
863
原创 深度学习初级课程 应用. 用TPU探测希格斯玻色子
本文为kaggle 深度学习初级课程 应用部分. Detecting the Higgs Boson With TPUs应用所学知识,弥补课程与应用新技能之间的差距!在庞大的数据中寻找希格斯玻色子。
2022-05-20 21:30:56
240
原创 深度学习初级课程 6.二分类
本文为kaggle 深度学习初级课程 第六部分 Binary Classification Apply deep learning to another common task.现在我们将把神经网络应用于另一个常见的机器学习问题:分类。到目前为止,我们所学到的大部分知识仍然适用。主要区别在于我们使用的损耗函数,以及我们希望最后一层产生什么样的输出。
2022-05-18 19:54:29
1189
原创 深度学习初级课程 5.剪枝、批量标准化
本文为kaggle 深度学习初级课程 第五部分Dropout and Batch Normalization Add these special layers to prevent overfitting and stabilize training.在这节课中,我们将学习两种特殊的层(dropout 和 Batch Normalization),它们本身不包含任何神经元,但它们添加了一些功能,有时可以以各种方式使模型受益。两者都是现代体系结构中常用的。
2022-05-16 22:53:28
477
原创 深度学习初级课程 4.过拟合和欠拟合
本文为kaggle 深度学习初级课程 第四部分 Overfitting and Underfitting --Improve performance with extra capacity or early stopping.在本课中,我们将学习如何解释这些学习曲线,以及如何使用它们来指导模型开发。特别是,我们将检查学习曲线,寻找拟合不足和拟合过度的证据,并查看几种纠正策略。
2022-05-15 10:18:20
648
原创 深度学习初级课程 3.随机梯度下降法
本文为kaggle 深度学习初级课程 第二部分 Deep Neural Networks --Add hidden layers to your network to uncover complex relationships.在这节课中,我们将了解随机梯度实现的方法,看到如何训练神经网络;我们将看到神经网络是如何学习的。
2022-05-14 09:34:45
1196
原创 深度学习初级教程 2.深度神经网络
本文为kaggle 深度学习初级课程 第二部分 Deep Neural Networks --Add hidden layers to your network to uncover complex relationships.在这节课中,我们将看到我们如何构建能够学习复杂关系的神经网络——深层神经网络以其著名。这里的关键思想是模块化,从简单的功能单元构建一个复杂的网络。我们已经了解了线性单元如何计算线性函数——现在我们将了解如何组合和修改这些单个单元,以建模更复杂的关系。
2022-05-13 19:10:29
344
原创 深度学习初级教程 1.单一神经元
本文为kaggle 深度学习初级课程 第一部分 A Single Neuron --Learn about linear units, the building blocks of deep learning. 本节介绍什么是深度学习?以线性单位示例!你就要学会开始构建自己的深度神经网络所需的一切。
2022-05-12 19:04:34
941
1
原创 Keras入门教程 6.Keras 预训练模型应用
本文 Keras 入门教程第六部分,本节使用预训练模型(包括- ResNetVGG16、MobileNet、InceptionResNetV3),使用一般的流程,来预测判定图片的分类。
2022-05-11 18:43:07
1339
原创 Keras入门教程 5.使用LSTM RNN 进行时间序列预测
本文 Keras 入门教程第五部分,本节使用LSTM 模型来分析 IMDB 电影评论并找出其正面/负面情绪。
2022-05-10 18:00:32
1401
原创 Keras入门教程 4.卷积神经网络(CNN)
本文 Keras 入门教程第四部分,本节利用卷积神经网络(CNN),对手写数字数据集 MNIST 做多分类建模。
2022-05-09 20:14:57
1456
原创 Keras入门教程 3.波士顿房价回归 (MPL)
这是keras 入门教程第三部分,从本节开始,将对Keras 自带的数据集进行学习,从波士顿房价回归数据集进行MPL算法回归建模。
2022-05-08 11:15:53
1389
原创 Keras入门教程 2.线性模型的优化
这是keras 入门教程第二部分,在上节基础上添加相应层,增加优化器,以达到优化模型的目的。线性回归模型。
2022-05-07 21:27:51
718
原创 keras入门教程 1.线性回归建模(快速入门)
本文以`Keras` 进行线性建模,对比了`sklearn` 的 LearnerRession 建模的不同。而面大量的 深度学习 均为`tesorflow` 1.X版本的教程,而2.0以上的版本教程,都是降到1.0版本再运行。因此,本文以`tesorflow` '2.8.0' 版本进行讲解。
2022-05-06 23:12:57
998
原创 机器学习中级教程 7.数据泄漏
本文为kaggle机器学习中级课程 第七部分 Data Leakage --Find and fix this problem that ruins your model in subtle ways.在本教程中,您将了解什么是数据泄漏以及如何防止它。如果你不知道如何预防,泄漏会频繁出现,它会以微妙而危险的方式破坏你的模型。所以,这是数据科学家实践中最重要的概念之一。
2022-05-04 16:27:06
796
原创 机器学习中级教程 6.梯度提升(XGBoost)
本文为kaggle机器学习中级课程 第六部分 XGBoost--The most accurate modeling technique for structured data.在本教程中,您将学习如何使用渐变增强构建和优化模型。该方法在许多Kaggle竞赛中占据主导地位,并在各种数据集上获得最先进的结果。
2022-05-03 12:27:26
1400
原创 机器学习中级教程 5.交叉验证
本文为kaggle机器学习中级课程 第五部分 Cross-Validation --A better way to test your models. 在本教程中,您将学习如何使用交叉验证来更好地衡量模型性能。
2022-05-02 12:47:22
1815
原创 机器学习中级教程 4.管道(Pipelines)
本文为kaggle机器学习中级课程 第四部分 Pipelines --A critical skill for deploying (and even testing) complex models with pre-processing.在本教程中,您将了解什么是管道,学习如何使用管道来优化建模代码。
2022-05-01 21:56:53
956
原创 机器学习中级课程 3.分类变量
本文为kaggle机器学习中级课程 第三部分 Categorical Variables --There's a lot of non-numeric data out there. Here's how to use it for machine learning.在本教程中,您将了解什么是分类变量,以及处理此类数据的三种方法。
2022-04-30 17:18:25
3536
原创 机器学习中级课程 2.缺失值
本文为kaggle机器学习中级课程 第二部分 Missing ValuesMissing values happen. Be prepared for this common challenge in real datasets. 缺失值的发生,为现实数据集中的这一常见挑战做好准备。本教程中,您将学习三种处理缺失值的方法。然后,您将在真实数据集上比较这些方法的有效性。
2022-04-29 21:53:51
667
原创 机器学习中级教程 1.介绍
本文为kaggle机器学习中级课程 第一部分 Introduction Review what you need for this course. 如果你有一些机器学习的背景,并且你想学习如何快速提高模型的质量,那你就来对地方了!在本课程中,您将学到:处理现实世界数据集中常见的数据类型(缺失值、分类变量),设计管道以提高机器学习代码的质量,使用先进技术进行模型验证(交叉验证),建立最先进的模型,广泛用于赢得Kaggle竞赛(XGBoost),以及避免常见和重要的数据科学错误(数据泄漏)。
2022-04-28 19:55:14
936
Kaggle 2022-04月赛数据集 机器学习 tabular-playground-series-apr-2022.zip
2022-05-03
数据处理可视化的最有价值的 50 张图资源包
2022-04-12
2020年浙江省信息学省选题目及数据(ZJOI2020)
2020-07-04
常用Excel三个库文件
2012-09-09
Android短信发送程序
2012-01-02
手机拔号程序
2012-01-01
照片抽奖程序(javascript)
2011-12-23
运行结果及报错内容,如何解决?
2022-05-28
TA创建的收藏夹 TA关注的收藏夹
TA关注的人