《SIFT原理与源码分析》系列文章索引:http://blog.csdn.net/xiaowei_cqu/article/details/8069548
由前一篇《
方向赋值》,为找到的关键点即SIFT特征点赋了值,包含位置、尺度和方向的信息。接下来的步骤是关键点描述,即用用一组向量将这个关键点描述出来,这个描述子不但包括关键点,也包括关键点周围对其有贡献的像素点。用来作为
目标匹配的依据(所以描述子应该有较高的独特性,以保证匹配率),也可使关键点具有更多的不变特性,如光照变化、3D视点变化等。
SIFT描述子h(x,y,θ)是对关键点附近邻域内高斯图像梯度统计的结果,是一个三维矩阵,但通常用一个矢量来表示。矢量通过对三维矩阵按一定规律排列得到。
描述子采样区域
特征描述子与关键点所在尺度有关,因此对梯度的求取应在特征点对应的高斯图像上进行。将关键点附近划分成d×d个子区域,每个子区域尺寸为mσ个像元(d=4,m=3,σ为尺特征点的尺度值)。考虑到实际计算时需要双线性插值,故计算的图像区域为mσ(d+1),再考虑旋转,则实际计算的图像区域为
,如下图所示:


源码
Point pt(cvRound(ptf.x), cvRound(ptf.y));
//计算余弦,正弦,CV_PI/180:将角度值转化为幅度值
float cos_t = cosf(ori*(float)(CV_PI/180));
float sin_t = sinf(ori*(float)(CV_PI/180));
float bins_per_rad = n / 360.f;
float exp_scale = -1.f/(d * d * 0.5f); //d:SIFT_DESCR_WIDTH 4
float hist_width = SIFT_DESCR_SCL_FCTR * scl; // SIFT_DESCR_SCL_FCTR: 3
// scl: size*0.5f
// 计算图像区域半径mσ(d+1)/2*sqrt(2)
// 1.4142135623730951f 为根号2
int radius = cvRound(hist_width * 1.4142135623730951f * (d + 1) * 0.5f);
cos_t /= hist_width;
sin_t /= hist_width;
区域坐标轴旋转
为了保证特征矢量具有旋转不变性,要以特征点为中心,在附近邻域内旋转θ角,即旋转为特征点的方向。

旋转后区域内采样点新