poj 1170 多重背包

转载 2012年03月22日 02:05:14

还是看了这位大牛的

http://www.chenyajun.com/2010/05/30/4597

题目大意:其实就是个全背包问题~~动态规划

给出每种物品的单价,和个数,然后给出这些物品的组合的优惠策略,要你求出购买这些物品的最小消费。

《编程之美》里有个买书的问题,跟这题很像。

这题难就难在动态规划的维度过多,比如就有3个品种的物品,有种打折策略

dp[i][j][k]表示物品0有i个,物品1有j个,物品2有k个的最小花费, 一种打折策略为物品0, a个与物品1, b个, 与物品 2,c个一起买共花费cost

dp[i][j][k] = dp[i-a][j-b][k-c] + cost,求这些打折策略里面最小的

这个商品的第几维不好去确定,要一个个的去枚举,很麻烦。。。。

考虑状态压缩策略,把每种商品对应的一个维度上去,由于每种商品的个数不超过5个,所以就像对应十进制一样,把它对应到6进制上,比如0商品x1个,1商品x2个,3商品x3个...那么压缩成x1 * 6的0次方 + x2 *  6的一次方 + x3 * 6的2次方 + 。。。 + xn * 6的n-1次方。 这样得到的状态值也可以反过来拆分到各商品分别有多少个。

 

#include <iostream>
#include <cstdio>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
using namespace std;

struct node
{
    int num, price;
};

int b, s, st, dp[56656];
node basket[5], offer[100];
map<int, int> dic;   //这个用来商品编码映射对应到6进制的第几位
int state[] = {1, 6, 36, 216, 1296, 7776, 46656};

inline bool check(int s1, int s2);//这个是用来计算状态s1和状态s2对应的每种商品的和是否超过了篮子里面的每种商品的个数
inline int cal(int sv);//这个是用来计算状态sv对应的商品花费总和

int main()
{
    memset(dp, -1, sizeof(dp));
    dp[0] = 0;
    st = 0;
    int index;
    scanf("%d", &b);
    for(int i = 0; i < b; i++)
    {
        int c;
        scanf("%d %d %d", &c, &basket[i].num, &basket[i].price);
        st += state[i] * basket[i].num;//求整个篮子里商品和对应的六进制
        dic[c] = i;
    }
    scanf("%d", &s);
    for(int i = 0; i < s; i++)
    {
        offer[i].num = 0;
        int n;
        scanf("%d", &n);
        for(int j = 0; j < n; j++)
        {
            int c, nu;
            scanf("%d %d", &c, &nu);
            index = dic[c];
            offer[i].num += state[index] * nu;//第i种打折策略对应的六进制状态
        }
        scanf("%d", &offer[i].price);
    }
    for(int i = 0; i < s; i++)
    {
        for(int j = 0; j <= st; j++)
        {
            if(dp[j] != -1)
            {
                if(j + offer[i].num <= st && check(j, offer[i].num))//相当于0/1背包问题,j状态表示对应选好的几种商品的和,与第i中打折策略的商品个数的和不超过总的商品个数,并且确定j状态的对应的第k种商品个数和和打折对应的第k种商品个数和不超过篮子里第k种商品的个数
                {
                    if(dp[j + offer[i].num] == -1)
                        dp[j + offer[i].num] = dp[j] + offer[i].price;
                    else
                        dp[j + offer[i].num] = min(dp[j + offer[i].num], dp[j] + offer[i].price);
                }
            }
        }
    }
    int ans = 0x7fffffff;
    for(int i = 0; i <= st; i++)
    {
        if(dp[i] != -1)
            ans = min(ans, dp[i] + cal(st - i));//求出最小的花费
    }
    printf("%d\n", ans);
    return 0;
}

inline bool check(int s1, int s2)
{
    for(int i = 0; i < b; i++)
    {
        if((s1 % 6 + s2 % 6) > basket[i].num)
            return false;
        s1 /= 6;
        s2 /= 6;
    }
    return true;
}

inline int cal(int sv)
{
    int sum = 0;
    for(int i = 0; i < b; i++)
    {
        sum += (sv % 6) * basket[i].price;
        sv /= 6;
    }
    return sum;
}


 

相关文章推荐

POJ 1170 Shopping Offers 状态压缩dp+完全背包

题意: 有n种物品需要你去购买,每种物品购买num【i】个。(1 ) 当然提供s种优惠:购买商家规定的组合商品的价格为 s【i】 2 7 3 2 8 2 5 2 1 7 3 5 2 7 1 ...

Poj 1170 Shopping Offers dp背包

题目链接:http://poj.org/problem?id=1170 题目大意:

POJ 1170 Shopping Offers 6进制压缩状态+完全背包

题意:有n(n           问买到所有物品的最少花多少钱。 题解:因为n和num很小,所以想到n维dp,但是不好处理,想到用6进制6位表示状态,然后对每种促销方案做完全背包就好了。 ...

POj 1170 Shopping Offers(变形背包+进制优化) 100

商店买东西会有优惠政策,使用优惠政策使顾客花的钱尽可能的少。 这道题很有现实背景啊,起初看这道题想的是用规则去优化各种组合情况的物品,并没有想到用背包。因为没有做过“规则”这种物品 还有一点就是接...

POJ 2392 Space Elevator 多重背包

看见啸爷再看这道题目,也跟着看了看,看懂之后感觉有戏,很裸的背包,果然1A,嘿嘿。 题目大意:给你n种木块,然后让你输出最高可以组成的高度。 限制条件是:每种木块的个数,与木块的在高度h以上就不可...

多重背包——POJ 1276

POJ 1276 Cash Machine /* poj 1276 多重背包题目,cost 与 value 是同一个 */ #include using namespace std; int ...

POJ Cash Machine 1276(多重背包)

Cash Machine Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 32926   Accepted: 11...

多重背包 poj 1276 Cash Machine

Cash Machine Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24656   Accepted: 86...

poj(1014)——Dividing(多重背包)

终于学到了用二进制的多重背包,:)其实也不是那么难嘛 题意: 现在有价值从1到6的物品,并且告诉每种价值的物品有多少种,然后问你能否把物品分成两堆,然后每堆的价值都是总价值的一半。 思路: 恩,就是一...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)