poj 1455 Crazy tea party

本文介绍了一种高效的数组反转算法,特别适用于圆形排列的数据结构。通过将圆形数组分为两部分并分别应用线性反转策略,该算法能够以较少的操作次数实现数组元素的完全反转。
    这道题第一眼看去很难,其实不然,短短几行代码就搞定了。

    说一下大概思路,如果是排成一排的n个人,如 1 2 3 4 5 6 7 8 我们要变成 8 7 6 5 4 3 2 1 需要交换 28次,找规律的话就是 n*(n-1)/2,但这道题是一个圈,要让他们顺序变反的话不一定1要在8的位置上去,4 3 2 1 8 7 6 5 这样也是反的,我们只要把n个人分成两部分,然后按拍成一条线的方法来出来两部分就OK了;

#include <iostream>
#include <stdio.h>

using namespace std;

int main()
{
    int n, t;
    cin >> t;
    while (t--)
    {
        scanf("%d", &n);
        int x = n>>1;
        x -= 1;
        int ans = x*(x+1)/2;
        if (n&1)
            ans = ans + (x+1)*(x+2)/2;
        else
            ans = ans<<1;
        printf("%d\n", ans);
    }
    return 0;
}


内容概要:本文围绕基于支持向量机的电力短期负荷预测方法展开基于支持向量机的电力短期负荷预测方法研究——最小二乘支持向量机、标准粒子群算法支持向量机与改进粒子群算法支持向量机的对比分析(Matlab代码实现)研究,重点对比分析了三种方法:最小二乘支持向量机(LSSVM)、标准粒子群算法优化的支持向量机(PSO-SVM)以及改进粒子群算法优化的支持向量机(IPSO-SVM)。文章详细介绍了各模型的构建过程与优化机制,并通过Matlab代码实现对电力负荷数据进行预测,评估不同方法在预测精度、收敛速度和稳定性方面的性能差异。研究旨在为电力系统调度提供高精度的短期负荷预测方案,提升电网运行效率与可靠性。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的科研人员、电气工程及相关专业的研究生或高年级本科生;对机器学习在能源领域应用感兴趣的技术人员。; 使用场景及目标:①应用于电力系统短期负荷预测的实际建模与仿真;②比较不同优化算法对支持向量机预测性能的影响;③为相关课题研究提供可复现的代码参考和技术路线支持。; 阅读建议:建议读者结合文中提供的Matlab代码,深入理解每种支持向量机模型的参数设置与优化流程,动手实践以掌握算法细节,并可通过更换数据集进一步验证模型泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xindoo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值