斐波那契数列趣谈

转载 2007年10月11日 21:03:00

斐波那契数列趣谈

          摘自----------http://bzhang.lamost.org/website/index.php?p=137

一般认为斐波那契数列的提出是基于兔子的繁殖问题:如果一开始有一对兔子,它们每月生育一对兔子,小兔在出生后一个月又开始生育且繁殖情况与最初的那对兔子一样,那么一年后有多少对兔子?

答案是,每月兔子的总数可以用以下数列表示:1,1,2,3,5,8,13,21,34,55,89,144,233…。这一数列是意大利数论家列奥纳多·斐波那契(Leonardo Fibonacci)在他13世纪初的著作Liber Abaci中最早提出的。如果取数列前两个元素为1,那么递推关系就是:

Fibonacci numbers

当然,曾经有一度数学家们将0作为斐波那契数列的首项(或第0项)。

这一数列看起来相当简单,但却隐藏着一些有趣的东西。

 

关于数列元素

关于斐波那契数列的元素,人们发现了不少有意思的事情。

质数与合数:斐波那契数列的质数元素也是该数列的质数项,唯一的例外是第4项元素3。但这个规律反过来不成立,数列的质数项元素的也可能是合数。这一“规律”可以为人们提供搜索大质数的线索。但在相当大的元素以后是不是仍有这个规律呢?目前没有人知道。

如果把用二进制表示的斐波那契数列前511个元素绘制出来,是这个样子的(Pegg 2003,摘自Wolfram Research):

Fibonacci_511

是不是有点分形的味道?

第10n项:分别是2,21,209,2090,20899,208988,2089877,20898764…。(Sloane’s A068070)也就是说,这一数字不断接近208987640249978733769…的前几项。而208987640249978733769…和这样一个数有关:

208987640249978733769...

Binet公式:这个公式不是轨道力学里的那个常用的同名公式,而是给出斐波那契数列第n项的另一个公式,是Jacques Philippe Marie Binet在1843年发现的:

Binet's equation

看到了什么?是不是括号中的两个数似乎和黄金分割有关?

 

斐波那契数列与黄金分割

苏格兰人Robert Simson证明了,当项数趋于无穷时,斐波那契数列的后项与前项之比趋近黄金分割,也就是1.61803398875…。这也许说明了斐波那契数列与黄金分割有天然的联系。

如斐波那契螺旋就是最直接的例子。如果顺逆时针螺旋的数目是斐波那契数列中相邻的2项,可称其为斐波那契螺旋,也被称作黄金螺旋。这样的螺旋能最佳利用圆周,疏密最为均匀。它的构造方法也不难,只需先用同样是与斐波那契数列有关的数构造黄金矩型(长宽之比为黄金分割),再在每个矩形中各描绘出一条1/4圆弧,让各段弧彼此连接。这样的黄金矩形也往往能一些艺术名作中找到,如达·芬奇著名的作品《蒙娜·丽莎》。

Fibonacci spirals

计算机绘制的斐波那契螺旋

golden rectangle

斐波那契螺旋与黄金矩型

 

自然界中的斐波那契数列

最典型的例子就是以斐波那契螺旋方式排列的花序或树叶。蓟、菊花、向日葵、松果、菠萝……都是按这种方式生长的。如此的原因很简单:这样的布局能使植物的生长疏密得当、最充分地利用阳光和空气,所以很多植物都在亿万年的进化过程中演变成了如今的模样。当然受气候或病虫害的影响,真实的植物往往没有完美的斐波那契螺旋。

Fibonacci_tree

每层树枝的数目也往往构成斐波那契数列。

曾在网上看到下面这样一组图,说的是花瓣数符合斐波那契数列各元素的各种植物,也许仅仅是巧合?

Fibonacci_flowers

另外,晶体的结构也往往与斐波那契数列有关。


BTW,数学软件Mathematica就自带有名为Fibonacci的工具包,不妨玩一玩。

1-《电子入门趣谈》目录

这是《电子入门趣谈》一书的目录部分,需要说明的是,《电子入门趣谈》的最终版还有第三部分叫做理论升华部分,但都是些关于写专利写论文的实战技巧和案例,可以说是对第十章和第十一章内容的扩展与举例。但是我感觉...
  • u012452561
  • u012452561
  • 2015年12月01日 16:50
  • 1034

0-《电子入门趣谈》前言

我在2014年出版了一本叫做《电子入门趣谈》的科技类入门级别的书籍,当时这本书出版的时候,好多热心朋友都发邮件问我哪里可以买到,只可惜我当时并没有足够的财力去大量发行它,而仅仅印刷了100本供我当时带...
  • u012452561
  • u012452561
  • 2015年12月01日 16:10
  • 780

3-《电子入门趣谈》第一章_一切从单片机开始-1.2赋予单片机生命

3-《电子入门趣谈》第一章_一切从单片机开始-1.2赋予单片机生命
  • u012452561
  • u012452561
  • 2015年12月02日 10:27
  • 1418

趣谈递归算法

记得之前小罗师傅给我写过一个有趣的VBS程序,代码就不说了,它讲的是一个有趣的小故事:“山上有座庙,庙里有个老和尚很爱跟人家讲故事,故事是这样的:山上有座庙,庙里有个老和尚很爱跟人家讲故事,故事是这样...
  • u012904383
  • u012904383
  • 2015年04月28日 13:38
  • 1694

“搭便车”趣谈

最近读了一篇外文文献,讨论的是发生在零售商与零售商、零售商与制造商之间的“搭便车效应”。文章讲到,H类型的零售商经常做促销活动,因此订单流很不稳定,而M类型零售商则坚持“天天低价”策略,因此有非常稳定...
  • github_37483541
  • github_37483541
  • 2017年02月09日 15:22
  • 115

趣谈相对路径与绝对路径

先打一个形象的比喻:比如你在某条街上,跟人家介绍自己家一样,一种你说,我们家就在前面的那个路口,一种说我家在xx市xx路xx号。两种方式,前面一种就是相对路径,后一种就是绝对路径了。这样说来是不是就没...
  • guolimin1992
  • guolimin1992
  • 2013年02月24日 11:35
  • 569

java设计模式趣谈

1、FACTORY——工程模式?追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基...
  • qinyushuang
  • qinyushuang
  • 2017年02月08日 11:26
  • 181

设计模式趣谈

创建型模式 1、FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和...
  • sinat_34979383
  • sinat_34979383
  • 2017年02月20日 11:32
  • 79

趣谈设计模式

好东西不得不转 在网上看见了这篇文章,作者以轻松的语言比喻了java的32种模式,有很好的启发作用。  创建型模式  1、FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的...
  • weijinqian0
  • weijinqian0
  • 2017年08月04日 09:55
  • 62

趣谈设计模式

最近参加面试,总是被问到设计模式的问题。本人作为一个实用派,完全没搞懂作为一个功能的实现者,设计模式到底有多重要。当然,本人的意思不是说设计模式没用或者不该了解,但是这是一个度的问题,简单的模式,常用...
  • momowuwenderen
  • momowuwenderen
  • 2013年08月05日 11:02
  • 570
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:斐波那契数列趣谈
举报原因:
原因补充:

(最多只允许输入30个字)