关闭

[leetcode] 回溯法 Combination Sum 系列问题

标签: leetcode
73人阅读 评论(0) 收藏 举报
分类:

leetcde中回溯法:具体的方法,我认为手把手教你 < leetcode > 中的回溯算法——多一点套路这篇博文讲的很清晰。

下面是leetcode中Combination Sum 系列问题使用回溯法的问题

39 . Combination Sum
题目:
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

The same repeated number may be chosen from C unlimited number of times.

Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
For example, given candidate set [2, 3, 6, 7] and target 7,
A solution set is:
[
[7],
[2, 2, 3]
]

题意:这个题是找出数组中相加=target的所有组合。

思路:求解该问题应该使用回溯法。

具体代码:

public class Solution {
    List<List<Integer>> result = new ArrayList<>();//保存最后结果

    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        Arrays.sort(candidates);
        if(target < candidates[0] || candidates.length == 0 || candidates == null){
            return result;
        }
        List<Integer> list = new ArrayList<>();
        backTracking(candidates, target, 0, list);

        return result;
    }

    public void backTracking(int[] candicates, int target, int start, List<Integer> list){
        if(target < 0){
            return;
        }else if(target == 0){
            result.add(new ArrayList<>(list));
        }else{
            for(int i = start; i < candicates.length; i++){
                list.add(candicates[i]);
                backTracking(candicates, target - candicates[i], i, list);
                list.remove(list.size() - 1);
            }
        }

    }
}

40 . Combination Sum II
题目:
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

Each number in C may only be used once in the combination.

Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
For example, given candidate set [10, 1, 2, 7, 6, 1, 5] and target 8,
A solution set is:
[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]

题意:找出所有数相加等于n的所有组合,注意每个数字只能用一次。
思路:使用回溯法。

代码如下:

public class Solution {
    List<List<Integer>> result = new ArrayList<>();

    public List<List<Integer>> combinationSum2(int[] candidates, int target) {
        Arrays.sort(candidates);
        if(candidates[0] > target || candidates.length == 0 || candidates == null){
            return result;
        }
        List<Integer> list = new ArrayList<>();
        backTracking(candidates, target, 0, list);

        Set<List<Integer>> set = new HashSet<>(result);
        return new ArrayList<>(set);
    }

    public void backTracking(int[] candidates, int target, int start, List<Integer> list){
        if(target < 0){
            return;
        }else if(target == 0){
            result.add(new ArrayList(list));
        }else{
            for(int i = start; i < candidates.length; i++){
                list.add(candidates[i]);
                backTracking(candidates, target - candidates[i], i + 1, list);
                list.remove(list.size() - 1);
            }
        }
    }
}

216 . Combination Sum III

问题:
Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.

Example 1:

Input: k = 3, n = 7

Output:

[[1,2,4]]

Example 2:

Input: k = 3, n = 9

Output:

[[1,2,6], [1,3,5], [2,3,4]]

题意:找出k个数相加等于n的所有组合。
思路:使用回溯法。

具体代码:

public class Solution {
    List<List<Integer>> result = new ArrayList<>();
    public List<List<Integer>> combinationSum3(int k, int n) {
        if(n < k ||n >= k * 9){
            return result;
        }
        int[] candidates = new int[9];
        for(int i = 0; i < 9; i++){
            candidates[i] = i + 1;
        }
        List<Integer> list = new ArrayList<>();
        backTracking(candidates,k, n, 0, list);
        return result;
    }


    public void backTracking(int[] candidates, int k,int n, int start, List<Integer> list){
        if(n < 0){
            return;
        }else if( n == 0){
            if(list.size() == k)
                result.add(new ArrayList<>(list));
        }else{
            int len = candidates.length;

            for(int i = start; i < len; i++){
                list.add(candidates[i]);
                backTracking(candidates, k, n - candidates[i], i + 1, list);
                list.remove(list.size() - 1);
            }
        }
    }
}
0
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:6738次
    • 积分:662
    • 等级:
    • 排名:千里之外
    • 原创:63篇
    • 转载:1篇
    • 译文:0篇
    • 评论:1条
    文章分类
    最新评论