用scikit-learn研究局部线性嵌入(LLE)

    在局部线性嵌入(LLE)原理总结中,我们对流形学习中的局部线性嵌入(LLE)算法做了原理总结。这里我们就对scikit-learn中流形学习的一些算法做一个介绍,并着重对其中LLE算法的使用方法做一个实践上的总结。

1. scikit-learn流形学习库概述

    在scikit-learn中,流形学习库在sklearn.manifold包中。里面实现的流形学习算法有:

    1)多维尺度变换MDS算法:这个对应的类是MDS。MDS算法希望在降维时在高维里样本之间的欧式距离关系在低维可以得到保留。由于降维时它需要考虑了样本的全局欧式距离关系,因此降维计算量很大,现在一般较少使用了。

    2)等距映射ISOMAP算法:这个对应的类是Isomap。 ISOMAP算法使用了样本间的测地距离来代替欧式距离,此外基本和MDS算法相同。由于降维时它仍然需要考虑了样本的全局测地距离关系,因此降维计算量很大。

    3)局部线性嵌入LLE算法:这个对应的类是LocallyLinearEmbedding。这个就是我们LLE原理篇里面的算法、除了包含我们原理篇里讲到的标准的LLE实现以外,它还支持改进版的LLE算法,包括MLLE,HLLE和LTSA。这三个算法我们在原理篇的第五节有介绍。后面我们会详细讲这个类的参数使用。

    4)拉普拉斯特征映射LE算法:这个对应的类是SpectralEmbedding。这个算法使用了图论的方法,用样本构成的无向图对应的拉普拉斯矩阵作特征分解来降维。具体方法和我们在谱聚类(spectral clustering)原理总结里面讲到的基本相同。

    5)t-distributed Stochastic Neighbor Embedding(t-SNE)算法:这个对应的类是TSNE。这个是一个比较新的降维方法。t-SNE希望样本间的在高维对应的高斯核函数相似度在低维可以得到保留,即低维和高维有尽量一样的相似度矩阵。

    这些算法基本原理很类似,都基于流形降维后保持样本之间的某一个特定的关系而产生。下面我们重点讲述LLE算法的使用,即LocallyLinearEmbedding的使用。

2. LLE算法类库使用介绍

    LLE算法类LocallyLinearEmbedding使用起来并不复杂,一般来说,需要调参的参数只有样本近邻的个数。下面我们对LocallyLinearEmbedding的主要参数做一个介绍。

    1)n_neighbors:即我们搜索样本的近邻的个数,默认是5。 n_neighbors个数越大,则建立样本局部关系的时间会越大,也就意味着算法的复杂度会增加。当然n_neighbors个数越大,则降维后样本的局部关系会保持的更好。在下一节我们可以通过具体的例子看出这一点。一般来说,如果算法运行时间可以接受,我们可以尽量选择一个比较大一些的n_neighbors。

    2)n_components:即我们降维到的维数。如果我们降维的目的是可视化,则一般可以选择2-5维。

    3) reg :正则化系数,在n_neighbors大于n_components时,即近邻数大于降维的维数时,由于我们的样本权重矩阵不是满秩的,LLE通过正则化来解决这个问题。默认是0.001。一般不用管这个参数。当近邻数远远的大于降维到的维数时可以考虑适当增大这个参数。

    4)eigen_solver:特征分解的方法。有‘arpack’和‘dense’两者算法选择。当然也可以选择'auto'让scikit-learn自己选择一个合适的算法。‘arpack’和‘dense’的主要区别是‘dense’一般适合于非稀疏的矩阵分解。而‘arpack’虽然可以适应稀疏和非稀疏的矩阵分解,但在稀疏矩阵分解时会有更好算法速度。当然由于它使用一

  • 5
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值