manifold.LocallyLinearEmbedding(LLE)流形学习之局部线性嵌入算法详解

高维数据难于可视化,需先经过降维处理。

线性降维框架Principal Component Analysis(PCA,主成分分析)、Independent Component Analysis(独立成分分析)、 Linear Discriminant Analysis(线性判别分析)等,但常会错失数据结构中的非线性项。

Manifold Learing可以看作一种生成类似PCA的线性框架,不同的是可以对数据中的非线性结构敏感。虽然存在监督变体,但是典型的流式学习问题是非监督的:它从数据本身学习高维结构,不需要使用既定的分类。

和传统的PCA,LDA等关注样本方差的降维方法相比,LLE关注于降维时保持样本局部线性特征,由于LLE在降维时保持了样本的局部特征,它广泛的用于图像图像识别高维数据可视化等领域。

  • 流形学习

流形学习(Manifold Learning)是一大类基于流形的框架。

数学意义上的流形比较抽象,不过我们可以认为LLE中的流形是一个不闭合的曲面。这个流形曲面有数据分布比较均匀,且比较稠密的特征,有点像流水的味道。

基于流行的降维算法就是将流形从高维到低维的降维过程,在降维的过程中我们希望流形在高维的一些特征可以得到保留。

​ 一个形象的流形降维过程如下图。我们有一块卷起来的布,我们希望将其展开到一个二维平面,我们希望展开后的布能够在局部保持布结构的特征,其实也就是将其展开的过程,就想两个人将其拉开一样。
在这里插入图片描述

​ 在局部保持布结构的特征,或者说数据特征的方法有很多种,不同的保持方法对应不同的流形算法。

​ 比如等距映射ISOMAP)算法在降维后希望保持样本之间的测地距离而不是欧式距离,因为测地距离更能反映样本之间在流形中的真实距离。
在这里插入图片描述

​ 但是等距映射算法有一个问题就是他要找所有样本全局的最优解,当数据量很大,样本维度很高时,计算非常的耗时,鉴于这个问题,LLE通过放弃所有样本全局最优的降维,只是通过保证局部最优来降维。同时假设样本集在局部是满足线性关系的,进一步减少的降维的计算量。

  • LLE思想

  • 历史

局部线性嵌入算法(Locally linear embedding, LLE)是一个非线性降维方法,由 Sam T.Roweis 和Lawrence K.Saul 于 2000 年提出并发表在《Science》杂志上。它能够使降维后的数据保持原有拓扑结构不变。现在已经广泛应用于图像数据的分类与聚类、文字识别、多维数据的可视化、以及生物信息学等领域中。

  • 背景假设

LLE 是一种局部算法。它的主要思想是利用数据的局部线性来逼近全局线性:即假设任意样本点都可表示为其临近样本点的线性组合,在寻找数据的低维嵌入同时,保持这种邻域线性组合关系不变。

​ LLE首先假设数据在较小的局部是线性的,也就是说,某一个数据可以由它邻域中的几个样本来线性表示。

​ 比如我们有一个样本x1,我们在它的原始高维邻域里用K-近邻思想找到和它最近的三个样本x2,x3,x4. 然后我们假设x1可以由x2,x3,x4线性表示,即: x 1 = w 12 x 2 + w 13 x 3 + w 14 x 4 x_1=w_{12}x_2+w_{13}x_3+w_{14}x_4 x1=w12x2+w13x3+w14x4</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值