一套完整的日志审核系统有助于系统bug确定和线上快速高效的运维。
但是系统日志普通情况下又很少大量的查询,但是写入量会比较大。
这比较符合Cassandra的数据应用场景。
而且由于Cassandra的去中心化,并且Cassandra集群增加节点的过程中可以保持原有数据不删除,而且由于是日志数据,不会有数据修改的问题,适用场景更合适了。
数据库结构
1.操作类型表
序号 | 字段名 | 类型 | 备注 |
1 | id | string | key |
2 | actionName | string | 操作类型名 |
3 | code | int | 类型编码 |
4 | createtime | datetime | 添加日期 |
5 | modifytime | datetime | 修改日期 |
2.日志记录表
序号 | 字段名 | 类型 | 备注 |
1 | id | string | key |
2 | actioncode | int | 操作类型编码 |
3 | from | string | 来源 |
4 | createtime | datetime | 添加日期 |
5 | createby | string | 操作人 |
6 | olddata | string | 旧数据 |
7 | newdata | string | 新数据 |
8 | message | string | 附加信息 |
9 | templ | string | 信息模版 |
3.错误日志表
序号 | 字段名 | 类型 | 备注 |
1 | id | string | key |
2 | ApplicationName | string | 错误发生的程序名 |
3 | Host | string | 问题机器名 |
4 | Ip | string | 问题机器的ip |
5 | mac | string | 问题机器的mac地址 |
6 | Type | string | 异常类型 |
7 | Source | string | 异常来源 |
8 | StatuCode | int | 异常状态代码 |
9 | Message | string | 异常信息 |
10 | SourceObject | string | 消息对象源 |
11 | createtime | datetime | 添加日期 |
12 | modifytime | datetime | 修改日期 |
4.常规日志表
序号 | 字段名 | 类型 | 备注 |
1 | id | string | key |
2 | ApplicationName | string | 程序名 |
4 | Ip | string | 机器的ip |
10 | Message | string | 消息 |
11 | createtime | datetime | 添加日期 |
数据库安装与使用
安装与各个客户端的使用:http://wiki.apache.org/cassandra/GettingStarted