【无中生有】---8---分布式配置系统数据库设计

在集群里手动配置每一台服务器上的程序很明显是不明智的,劳神费力还可能出差异造成程序不一致。

而且在发生配置改变的时候还需要一一去做修改,更是麻烦

将配置内容的获取与载入作为一个功能插件内化到程序中,并以消息监听器的方式接收配置服务管理端发来的更改通知,移除旧的配置数据在本地生成的数据文件,然后载入新的数据文件,并加载到程序中。

这样就形成数据的两处存储,一处是在服务管理端,一处是在应用程序所在服务器,为什么不直接加载进入程序中呢?

因为服务端有可能离线,而同时应用程序重启,在本地保留一份以应对服务端离线。

数据库设计

解决方案表:每一个解决方案代表一系列服务所需要的配置文件组合,为了防止程序间修改配置造成的问题,不同程序的配置数据不可以共享,虽然造成一定工作量,但是不会由于共享配置数据改变造成的程序间配置需求差异造成的问题。

字段类型作用
SoluationIdguid方案id
SoluationName字符方案名
SoluationSimple字符方案简介
AppIdguid程序id
Enable布尔类型方案是否启用
CreateTime时间类型创建日期
CreateBy整型创建人
ModifyTime时间类型修改日期
ModifyBy整型修改人
IsDelete布尔是否删除
应用程序表

字段类型作用
AppIdguid应用程序id
AppName字符程序名
AppTitle字符程序展示名
CreateTime时间类型创建日期
CreateBy整型创建人
ModifyTime时间类型修改日期
ModifyBy整型修改人
IsDelete布尔是否删除

组件表:
通过组件数据在组件发生重大变更时对配置文件表进行统一性更改

字段类型作用
Id整型数据id
AppplusIdguid组件id
AppPlusName字符程序组件名
CreateTime时间类型创建日期
CreateBy整型创建人
ModifyTime时间类型修改日期
ModifyBy整型修改人
IsDelete布尔是否删除

配置文件表:程序组件需要的配置文件,此表的数据只增不修改

字段类型作用
Idguidid
SoluationIdguid配置方案解决方案id
AppplusIdguid组件id
Title字符配置展示名
Contentxml配置内容
Version整型版本号,修改一次内容就自动新增一个版本
Enable布尔类型方案是否启用
CreateTime时间类型创建日期
CreateBy整型创建人
StopTime时间类型停用日期
ModifyBy整型修改人
配置历史表:

字段类型作用
Id整型id
SoluationIdguid配置方案解决方案id
SoluationVersion整型解决方案版本号
MdsIdguid服务配置文件id
Version整型服务配置文件版本号
CreateTime时间类型创建日期
CreateBy整型创建人

<think>好的,我现在需要处理用户关于检索增强生成(RAG)在知识密集型NLP任务中的应用的问题。首先,我得仔细看看用户提供的引用内容,确保回答准确且符合要求。 用户引用了四篇资料,其中提到RAG模型结合了参数记忆和非参数记忆,在多项任务中表现优异。我需要将这些信息整合起来,结构清晰地解释RAG的技术原理、训练方法和应用场景。 首先,技术原理部分,根据引用[2]和[3],RAG通过检索器获取外部知识,再结合生成模型。需要提到RAG-Sequence和RAG-Token两种生成方式,以及如何利用检索到的文档。 然后是训练方法,引用[3]和[4]指出,预训练和微调阶段的不同处理方式。要说明联合训练检索器和生成器,使用MIPS进行检索,以及训练时如何优化模型参数。还要注意文档编码器是否固定,引用[4]提到在微调时保持文档编码器固定,只更新查询编码器和生成器,这点很重要。 应用场景方面,引用[2]提到开放域问答任务,比如Natural Questions和TriviaQA,需要强调RAG在这些任务中的优势,特别是在需要外部知识的场景下。 接下来,生成相关问题时要覆盖技术原理、优化、对比和挑战等方面。比如,如何优化检索器的效率,或者RAG与传统生成模型的区别。 同时,要确保所有数学表达式用$...$格式,比如MIPS的全称可能需要用公式表示,但这里可能不需要。如果有提到概率公式,需要用LaTeX格式,但根据引用内容,可能较少涉及数学表达式,但需注意检查。 另外,回答结构要清晰,分点说明,并自然添加引用标识。确保语言流畅,使用中文,避免使用Markdown格式,保持口语化,但根据用户要求,回答中的部分可能需要用代码块或公式格式,但用户示例中的代码块是允许的,所以如果回答中有代码或公式,需正确使用。 最后,检查是否有遗漏的关键点,比如联合训练、异步更新索引、生成方式的不同等。确保每个部分都有对应的引用支持,比如引用[3]提到的预训练和微调步骤,引用[4]中的训练细节。 现在,我需要将这些整理成一个结构化的回答,确保符合用户的所有要求,包括引用标识、问题生成和正确的格式使用。</think>### 检索增强生成(RAG)在知识密集型NLP任务中的应用 检索增强生成(Retrieval-Augmented Generation, RAG)是一种结合**参数化生成模型**与**非参数化外部知识库**的技术,旨在解决需要依赖外部知识的复杂NLP任务(如开放域问答、事实验证等)[^2]。 --- #### 技术原理 1. **检索与生成结合** - 给定输入(如问题),RAG首先通过检索器从大规模文档库中获取相关段落(如使用Maximum Inner Product Search, MIPS检索最相关的Top-N文档)[^3]。 - 生成器(如BART)基于检索到的文档生成最终答案。生成方式有两种: - **RAG-Sequence**:所有文档共同生成一个完整答案序列 - **RAG-Token**:每个标记的生成可动态选择不同文档作为参考[^3]。 2. **联合训练机制** - **预训练阶段**:对检索器和生成器进行无监督联合训练。例如,对文本进行随机掩码后,检索相关段落并预测被掩码内容[^3]。 - **微调阶段**:使用有监督数据(如问答对)优化模型,仅更新查询编码器(BERT_q)和生成器(BART),而保持文档编码器(BERT_d)固定以降低计算成本[^4]。 --- #### 关键优势 1. **突破模型记忆限制**:生成器无需预先记忆所有知识,而是动态检索外部信息,更适合处理长尾或动态更新的知识[^2]。 2. **高效知识利用**:通过MIPS检索,模型能快速定位高相关性文档,避免传统生成模型“无中生有”的问题[^3]。 3. **任务适配性强**:在开放域问答(Natural Questions)、事实验证(FEVER)等任务中达到SOTA效果,尤其在需要多文档推理的场景下表现突出。 --- #### 应用场景示例 1. **开放域问答**:回答需要结合多来源知识的问题(如“量子计算机的物理实现方式有哪些?”) 2. **事实验证**:验证陈述的真实性(如“珠穆朗玛峰高度为8848米”)需检索权威地理数据 3. **对话系统**:生成内容需符合特定领域知识(如医疗咨询需参考最新医学指南)[^3] ```python # 简化的RAG流程伪代码 def rag_inference(query, retriever, generator): retrieved_docs = retriever.search(query, top_k=5) # MIPS检索 generated_answer = generator(query, retrieved_docs) # 基于检索结果生成 return generated_answer ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值